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ABSTRACT

Detailed understanding of heat transfer and fluid

flow is required for many aerospace thermal systems.

These systems often include phase change and operate over

a range of accelerations or effective gravitational

fields.

An approach to analyzing such systems is presented

which requires the simultaneous solution of the

conservation laws of energy, momentum, and mass, as well

as an equation of state. The variable property form of

the governing equations are developed in two-dimensional

Cartesian coordinates for a Newtonian fluid.

A numerical procedure for solving the governing

equations is presented and implemented in a computer

program. The Galerkin form of the finite element method

is used to solve the spatial variation of the field

variables, along with an implicit Crank-Nicolson time

marching algorithm. Quadratic Lagrangian elements are

used for the internal energy and the two components of

velocity. Linear Lagrangian elements are used for the



pressure.

The location of the solid/liquid interface as well as

the temperatures are determined from the calculated

internal energy and pressure. This approach is quite

general in that it can describe heat transfer without

phase change, phase change with a sharp interface, and

phase change without an interface.

Analytical results from this model are compared to

those of other researchers studying transient conduction,

convection, and phase change and are found to be in good

agreement. The numerical procedure presented requires

significant computer resources, but this is not unusual

when compared to similar studies by other researchers.

Several methods are suggested to reduce the computational

times.
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NOMENCLATURE

thermal diffusivity

specific heat

(also capacitance matrix)

geometric dimension

internal energy

Fourier number

acceleration

(also gravity)

node number

time step increment

Jakob number

thermal conductivity

stiffness matrix

latent heat

unit normal vector

unit tangential vector

mass matrix

interpolation (shape) functions

Nusselt number

number of global nodes

pressure
Prantl number

heat flux

number of nodes per element

Rayleigh number

temperature

time

velocity in x-direction

velocity in y-direction

velocity

Gauss-Legendre weighting factors

coordinate in cartesian system

coordinate in cartesian system

coefficient of thermal expansion
transformed coordinate

absolute viscosity

density

normal stress

shear stress

(also dimensionless time)

kinematic viscosity
field variable

field value at a node

dimensionless location of phase interface

transformed coordinate
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v

parameter in time-marching recursion algorithm

(also dimensionless temperature)
prescribed nodal value

divergence of a vector

Subscripts and superscripts

1

S

0

classifies an area or volume integral
classifies a surface integral

classifies an approximate value of field variable

classifies liquid state
classifies solid state

classifies initial condition or reference state

Matrix notation

[J
{ }
[ ]

single row matrix

single column matrix
matrix
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CHAPTER 1

INTRODUCTION

The need for general analytical tools for modeling

heat transfer and fluid flow is increasing as man designs

more complex thermal/fluid devices. This is particularly

true in the aerospace industry where highly reliable

systems must operate in environments where little or no

supporting experimental data is available. Such systems

often include phase change and operata over a range of

accelerations or effective gravitational fields.

Experimental investigations of fluid/thermal systems under

low gravity conditions are difficult and expensive.

Because of the time required for many phase change

problems, most experimental studies are not possible in

ground-based low-gravity facilities and must be done on

Earth-orbiting laboratories. For these reasons a

predictive analytical or numerical method would be very

valuable.

The intent of this research is to develop a general

purpose numerical approach and computer program for

analyzing the heat transfer and fluid flow of materials

undergoing phase change. Such an analytical tool would
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significantly reduce the number of experiments required

and aid in our understanding of the experimental results.

Many practical applications of such a computational

tool exist, such as modeling cryogenic fluid management

systems and analyzing advanced material processing and

casting methods. Systems such as batteries and thermal

management devices could be examined as they might have to

withstand initial or inadvertent freezing in the low

temperatures of space. Another application is in the

analysis of designs for a thermal storage device to be

used in the space power system on the National Aeronautics

and Space Administration (NASA) Space Station Freedom or

lunar base. As described by Klann 34, this space power

system would collect and concentrate solar energy to heat

the working fluid of a Brayton cycle heat engine. A

latent heat thermal storage device would provide energy

for the power system during dark periods of the Space

Station orbit, (see Burnsl0).

Analytical approaches and numerical techniques for

modeling thermal and fluid problems have been the subject

of research and development for many years. Today,

computer programs for modeling heat transfer by conduction

are well developed and generally easy to apply. Until

recently, computer programs for modeling fluid flow and

its effect on convective heat transfer, however, had

mostly been limited to empirical relationships based on

known and simple geometries. Today, computational
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convection using numerical methods such as finite

differences and finite elements have become available to

handle more complex flow geometries. Some of these are

commercially available, however most are research oriented

and limited in scope to particular applications. The

additional complexities of having phase change phenomenon

and materials that exhibit widely varying properties

restricts the application of most present methods for such

problems. Hence further work is needed to develop general

purpose methods to analyze fluid/thermal problems with

phase change.

In Chapter 2 a review is presented of the literature

dealing with numerical solutions to thermal, fluid flow,

and phase change problems. Chapters 3 and 4 cover the

development of the governing equations and the numerical

approach. Results and verification of the approach and

model are presented in Chapter 5. The main body of the

thesis ends with Chapter 6, in which concluding remarks

and recommendations for further work are given. A

computer program, PHASTRAN, developed during this research

is discussed and presented in the appendices.



CHAPTER 2

LITERATURE REVIEW

Much research has been devoted to the analysis of

materials undergoing phase change because of its

association with many applications. The food,

metallurgical, and semi-conductor industries are important

examples. More recently, there has been an interest in

modeling these processes in the space environment.

Many examples of research are in the literature for

modeling phase change and fluid flow. For a detailed

discussion on related subjects the reader is referred to:

Stefan 58 and Lunardini 38, on the phase change problem;

Carnahan, Luther, and Wilkes II on numerical methods

including the finite difference method; Baker 4, Huebner

and Thornton 32, Zienkiewicz 65 on the finite element

method; Arpaci and Larsen 2 on convective heat transfer;

and VanWylen and Sonntag 61 on thermodynamics.

To summarize the some of the most important works

related to this research topic, first those papers related

to numerical modeling of the phase change problem will be

discussed followed by those related to the fluid flow.

The classical analytical approach to the phase change

4
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problem will not be discussed. Though elegant in its

mathematical derivation, its application to problems of

complex geometry and temperature dependent material

properties is impractical. Some noteworthy papers on the

classical analytical modeling of phase change include

Budhia and Kreith 9, Siegel and Savino 54.

Most of the numerical models of phase change have

involved the finite difference method, and to a lesser

extent, the finite element method. This is not because of

any superiority of the finite difference method, but

rather the chronological development of the two methods.

Indeed, most of the recent works have been devoted to the

finite element approach.

Otis 46 solved the melting problem by dividing the

region into finite space intervals. Temperature was

assumed uniform within each volume element at any instant

and the latent heat effect was modeled as a moving heat

source. The method required a coordinate transformation

in terms of a pseudo time variable and was limited to

analyses of materials initially or finally at the fusion

temperature.

Murray and Landis 41 suggested an approach by which

the interface location was calculated by solving a

differential equation for the velocity of the phase front.

The differential equation was derived from an energy

balance at the phase front. The temperature at the new

front location was then set equal to the freezing
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temperature.

Springer and Olson 56 used the Murray and Landis

approach to track the phase front in two dimensions.

Again the temperature at the phase front was set equal to

the fusion temperature and the temperatures in the

remainder of the solid and fluid was determined from a

finite difference solution for heat conduction.

Shamsundar and Sparrow 53 used enthalpy as the

dependent variable instead of temperature in a finite

difference formulation. Because their formulation

involved an integral approach to the energy balance, the

method eliminated the need to explicitly track the

interface. They maintained this was the best method for

analysis of multidimensional conduction phase change.

More discussion on this method follows in Chapter 3.

Only a few researchers have included the effects of

natural convection in the fluid or radiative heat

transfer. Such effects introduce nonlinearities in the

field equations which require iterative solution

procedures and increased computational times.

Tien 59 solved the phase change problem with natural

convection included in the fluid. He used a finite

difference formulation of the conservation laws using a

vorticity and stream function form of the momentum

equations. Again the Murray and Landis approach was used

to track the phase front. Tien's numerical results

compared favorably with experimental data on the freezing
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of naphthalene.

Valle 60 also included natural convection in his

solution but solved the problem using the finite element

method. The conservation laws were developed in terms of

the stream function and temperature. The latent heat

effects and phase front motion were formulated implicitly

in terms of an imbalance of the heat fluxes at the

solid/liquid interface. This was one of the most detailed

analyses of the phase change problem to date and included

fluid flow, surface tension, and radiation effects. Valle

compared his results to the work of Tien, however, and

concluded that this approach did not seem to track the

interface motion as effectively as approaches based on

that of Murray and Landis.

More recently, several works have approached the

phase change problem using moving and deforming finite

element grids and/or coordinate transformation.

Ettouney and Brown 18 transformed the problem so that

the melt and solid regions have fixed boundaries, of which

the interface is one. This is an elegent approach which

couples the interface shape and field variables allowing

more efficient solution techniques. However, this

approach, as with other moving mesh formulations, has the

limitation of not being able to easily handle

disappearance, merging or fragmentary distribution of

phases.

Albert and O'Neill I used a method of transfinite
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mappings in conjunction with a moving boundary-moving mesh

finite element technique, improvement in tracking the

phase front was made compared to a fixed mesh approach.

Again there is the limitation mentioned above for the

Ettouney and Brown method which restricts its application.

Because of the high computational costs associated

with modeling the phase change problem, some researchers

have studied less numerically intensive schemes.

Schneider 52 formulated the phase change problem using the

finite difference technique along with a variation of the

enthalpy method of Shamsundar and Sparrow 53" Depending on

the amount of movement of the interface, Schneider's

algorithm adjusts the number of convergence iterations.

If the interface only moves within one grid spacing, only

one iteration is used to converge the nonlinearities.

This significantly reduces the computational times but may

also affect the accuracy, especially for materials with

properties that vary rapidly near the interface.

The application of numerical methods to the modeling

of fluid flow problems has made remarkable progress over

the last 25 years. Initially, computer-based solutions

used the finite difference method. Over the years, the

finite difference method has provided solutions to many

difficult flow problems including slow viscous flows,

boundary layer flows and even variable property flows

(thermo-hydrodynamic) flows. More recently, the finite

element method has been developed to handle many of the



9

same problems. The finite element method has been shown

to be particularly useful in problems involving complex

geometries and boundary conditions. Baker 3, and

Gallagher, et al. 21 contain many examples of the

application of finite element to complex problems.

Early applications of the finite element method to

some continuum problems often used variational methods to

derive the finite element equations. The lack of exact

variational forms of the Navier-Stokes equations, however,

prevented the use of finite elements to practical flow

problems. Later, the application of weighted residual

methods broadened the application of finite elements to a

variety of fluid problems.

Olson 44 applied a pseudo-variational approach to a

two-dimensional incompressible formulation developed in

terms of the stream function.

Baker 3 applied the weighted residual technique of

Galerkin 22 to viscous incompressible flow. The Galerkin

criteria, originally a nondiscretized approach is

currently the most widely used method of formulating the

finite element (discretized) equations.

Hood and Taylor 31 also used the Galerkin criteria and

formulated the Navier-Stokes equations in three ways: the

velocity/pressure formulation; the stream function and

vorticity formulation; and the purely stream function

formulation. Comparison of these three formulations

suggests that the velocity/pressure formulation may have
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several advantages. It is readily extended to three

dimensions. Pressure, velocity, velocity gradient, and

stress boundary conditions can be easily handled. And it

appears to require less computational time than the other

formulations.

Recently, more attention has been given to the

considerations for obtaining good quality solutions to

these nonlinear fluids problems over a wider range of

conditions. Important aspects of this include proper

choice of solution technique, element types, and mesh

refinement.

Gartling, et al.23"formulated the finite element

equations in terms of velocity and pressure and studied

the convergence properties of severalsolution algorithms,

two element types, and several mesh refinements. Laminar

flow between converging plane walls was used to represent

a nonlinear problem. Of the solution techniques, they

found that those which solved the full unsymmetric

equation system were superior and more generally

applicable than their symmetric counterparts. In

particular, the Newton-Raphson procedure was the most

rapidly convergent. No significant difference was found

between an 8-node quadrilateral element and a 13-node

quadrilateral element, with the 8-node being preferred

because of its reduced complexity in formulation and use.

Finally, adequate mesh refinement was required in the

direction of most rapid variation of the solution field.
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Ben-Sabar and Caswell 6 investigated the effect of the

choice of boundary conditions on the problems where the

ratio of convective to diffusive terms are large. They

found that consistent use of the velocity and surface

traction boundary conditions are necessary to delay the

appearance of numerical instabilities with increasing

Reynolds number.

Fletcher 20 developed an alternating direction

implicit finite element method for flows where the

convection terms dominate and applied the method to

viscous compressible flow past a rectangular object. In

comparison with an equivalent finite difference scheme, he

found the finite element approach to be computationally

more efficient.

Solutions to coupled fluid/thermal problems continue

to be the subject of much research, particularly transient

problems in three-dimensional space. Such problems often

require the expenditure of significant computer resources.

Though beyond the scope of this study, a number of efforts

are directed at improved solution methods to solving large

systems of nonlinear equations. The use of many of these

methods will be dependent on the availability of new

computer architectures providing vector and parallel

processing capabilities.



CHAPTER3

PROBLEM FORMULATION

Problem statement

The problem selected is to analytically determine the

transient temperatures, heat transfer rates, fluid

velocities, and pressures in a pure substance or eutectic

material undergoing phase change. The material can exist

in solid and fluid states with variable properties

satisfying a general equation of state model. It is

contained in a vessel of arbitrary geometry such as is

shown in Figure 3.1. Boundary conditions could include

prescribed temperatures, heat flux, and fluid velocities.

Flow in the fluid is induced due to a gravitational body

force or accelerating reference frame and both inertial

and viscous effects are included.

No surface free energy (surface tension) effects are

included, nor is heat transfer by radiation. The effect

of supercooling and mechanisms of nucleation or

crystallization are also not considered. In addition, the

fluid motion is restricted to laminar flow.

12
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Figure 3.1 Example Phase Change System

Governing Equations

Problems in science and engineering can be classified

as LaErangian or Eulerian depending on the viewpoint or

reference frame adopted. To formulate the governing

equations, one of these two approaches must be adopted.

In the Lagrangian approach, all matter consist of

particles which can be identified as they move through

space. The independent variables in the Lagrangian system
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are x0, Y0' z0 and t where x0, Y0, z0 are the coordinates

which a specified fluid element passed through at time t o .

In the Eulerian approach, processes are characterized

by continua of field quantities. The independent

variables are the spatial coordinates x, y, z and time.

To derive the governing equations, we focus our attention

on one area in space called a control volume. If we apply

the governing laws of the problem to a differential

control volume we obtain a set of governing differential

equations. This is the approach with which most problems

in fluid and thermal analysis are formulated and is the

approach adopted here.

The solution to modeling the phase change problem

includes solving the equations expressing the three

physical laws of:

i. Conservation of energy

2. Conservation of momentum

3. Conservation of mass

as well as a thermodynamic equation of state.

Because this problem is dominated by thermal aspects,

it is particularly important to consider the form of the

energy equation. The conservation of energy is most

commonly expressed in terms of temperature and specific

heat. Such formulations are quite valid for single phase

problems, however, they may be inappropriate for materials

undergoing phase change at a discrete temperatures.

To further discuss this, let us consider two
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situations, one in which a sharp interface is formed and

the other in which a mushy region with no sharp interface

will exist.

An example of a sharp interface might be a thin layer

of water with its top and bottom sides insulated as shown

in Figure 3.2. Suppose the water was initially at a

Initial Temperature,

To=mf

<T, T2=TO

liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii__iiiiiii!iii!iii!iiiiiiiiiiliiiiiiiiiii!iiiiiiii%I

Sharp Inteffaoe____x

at FuslonTemperature, Tf

Figure 3.2 System Exhibiting a Sharp Interface

During Phase Change

temperature above the freezing point and then one end of

it is reduced to a temperature below the freezing point.

Under these circumstances, a sharp interface will form

which will separate the solid and liquid regions. In a

volume element containing the interface however, the
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specific heat is not easily defined. For such multi-phase

problems, the energy equation is usually written

separately for the solid and liquid phase regions. Since

the interface is generally of unknown shape and position,

numerical methods such as finite difference or finite

element discretization encounter significant problems in

handling the interface. Some numerical methods track the

location of the interface. A heat balance can be

formulated at the interface for more than one spatial

coordinate. A differential equation is used to relate

velocity of the interface to the heat absorption or

removal. For three-dimensional phase change systems the

interface is a surface and numerical methods for tracking

the interface can become quite compliGated.

The temperature and specific heat formulation also

has difficulty when analyzing phase change where the

interface is not sharp. White 62 justifies the existence

of mushy regions with an example of the welding of two

plates. A similar example would be to consider a

thermally insulated plate with electrical connections at

each end, as in Figure 3.3. When an electric current is

passed through the plate it will heat up due to heat

generation from internal resistance. Eventually, the

temperature of the plate will reach the fusion (i.e.

melting) temperature of the material. At this time the

internal energy will equal the saturated value at that

pressure and temperature and is equal to the product of
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Electric

Current

Insulated Rate

=========================================::::::::::::::::::::::::::::::i:i:i:i:!_!:i:i:i:[:i:i:i::!:::::::::::::::::::::::::i:i:i:i:i:i:i:i:i:!:i:i:i:i:!:i:i:i:i:i:!:i:i:i:i:i:i:i:i:!:i:i-.
/ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

z___ Uniform Heat Generation

From Internal Resistance

Figure 3.3 System Which Does Not Exhibit a Sharp
Interface During Phase Change

the density, p, specific heat of the solid, C , and fusion

temperature, T t . This is shown graphically in Figure 3.4

as point i. As time continues, the internal heat

generation results in increased internal energy with no

change in temperature. This continues until the amount of

energy converted to heat equals the latent heat and the

material becomes liquid. This is seen as point 2 in

Figure 3.4. As time progresses further, temperature of

the material resumes its increase governed by the specific

heat in the liquid. From this example, it is apparent

that with the temperature description of the problem, the

continuous transition is lost during the phase change.
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Also assuming negligible diffusion of the thermal energy

out of the electrodes, the material can exist at the

fusion temperature in a two-phase state with no apparent

sharp interface.

Internal

Energy

: ¢D

Temperature

Figure 3.4 Internal Energy Versus Temperature for a

Substance whlch Changes Phase at a Discrete

Temperature

Many materials exhibit the behavior of phase change

at a discrete temperature. To avoid the noncontinuous

behavior of the product of temperature and specific heat,

many formulations assume that the phase change occurs over

a small but finite temperature range, see for example
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Bamberger, et al. 5 This approach essentially defines an

artificial specific heat for the volume containing the

phase front. While these formulations retain temperature

as the primary unknown, they may introduce significant

errors in the results. Bonacina, et al. 8 demonstrated for

example, that even in the one-dimensional case, the

magnitude of the assumed range of phase change

temperatures can affect the results significantly.

After studying the above examples, it is apparent

that it is the energy in a given volume that is really of

interest and not its temperature. Thus, an alternative to

the temperature and specific heat formulation is to use

internal energy as the primary unknown and compute the

temperature from the internal energy. -Shamsundar and

Sparrow 53 were among the first to employ such an approach.

They used an integral relation setting the rate of

increase of the energy content in a arbitrary control

volume equal to the net rate at which heat is conducted in

through its surface. This relation was applicable whether

or not the interfacial surface passes through the control

volume. By assuming no fluid motion, pressure is

independent of time, and they reformulated the problem in

terms of enthalpy. Such a formulation turns out to be

quite general in that it can describe heat conduction

without phase change, phase change with a sharp interface,

and phase change without an interface. Because the phase

front is not explicitly tracked, the enthalpy formulation
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avoids many of the numerical difficulties associated with

fixed grid numerical methods, particularly in problems

involving fragmented phases.

Using an Eulerian frame of reference the governing

equations for this problem can now be presented. For a

variable property, Newtonian fluid, neglecting internal

heat generation, surface free energy, and radiation, the

conservation laws in Cartesian coordinates are:

Conservation of energy:

ae u%e ae _x + _y = _x(k_x)+ _ _)

+ _F(x,y,t)

(S.l)

in which F is the viscous dissipation function given by

For the problems presented in Chapter 5, the natural

convective velocities are slow and the vicosities are low.

Under these conditions, the viscous dissipation terms may

be neglected.
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Conservation of momentum (Navier-Stokes equations):

ao aT

8u 8u au 8P + .__. + ___xy
p_ + pu_ + pv_ = Pgx - a-_ %x ay

(3.2)

ao aT
8v uaV vaV aP __. y (3.3)

in which

au 2
o = 2F _V.Vx ax

(3.4)

o = 2 av 2
y Fay _v.v

(3.5)

T = T = _ +
xy yx

(3.6)

Conservation of mass:

a_p_ + aou+ a__= o
at ax ay

(3.7)

Additional equations are required to evaluate the

thermodynamic of state and material properties:
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temperature, T=T(e,P)

density, p=p(e,P)

thermal conductivity, k=k(e,P)

viscosity, _=_(e,P)

If we can evaluate the state and the material

properties explicitly we can reduce the number of

equations to four and solve in terms of the basic unknowns

u, v, P, and e. Specifying the state of a pure substance

requires a minimum of two independent properties. When

two phases of a pure substance exist together in

equilibrium, the pressure and temperature are not

independent and can therefore not be used to define the

state. The two independent properties chosen as the basic

field variables in the above equations are internal energy

and pressure.

The initial conditions consist of specifying the

velocities, pressure, and energy at time zero. The

hydrodynamic boundary conditions specify either the

velocity components or surface tractions. The thermal

part of the problem requires the heat flux or internal

energy be specified on the boundary. Temperature boundary

conditions must therefore be converted to internal energy.

It should be noted that momentum and continuity

equations as well as the convective transport terms in the

energy equation are not required in that part of the

solution domain which is in the solid state. The approach



23

to handling this problem is presented in the next chapter

concerning the numerical method.

At this point, many formulations, for example

Valle 60, perform a transformation with the fluid velocity

variables into a streamfunction and vorticity formulation.

This was not chosen here. This decision was due to the

requirement that this formulation be easily extendable to

three-dimensional space. The streamfunction-vorticity

formulation is often applied to two,dimensional

incompressible flows. It can, however, be applied to a

broader class of problems. This is because the

definitions for the dependent variable transformations are

essentially vector identities. These transformations can

therefore be applied to three-dimensional Cartesian

coordinate system. Unfortunately, for three dimensions,

six scalar components for the streamfunction and vorticity

must be defined compared to the four (3 velocities and 1

pressure) used in the physical variable formulation. In

addition, certain boundary conditions become difficult to

apply. These difficulties have generally precluded

application of streamfunction-vorticity to three-

dimensional problems.

As given in the problem statement, the present

analysis is restricted to laminar flow conditions. Fluid

motion is characterized as lamlnar if the fluid flows in

imaginary layers and there is no macroscopic mixing

between adjacent fluid layers. A flow is said to be
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turbulent, however, if such mixing occurs. It should be

noted that the governing equations given above hold at any

instant of time and apply to both laminar and turbulent

flows. In a turbulent flow, however, the fluid velocities

are fluctuating randomly about their mean values. Such a

random variation in the field variables is nearly

impossible to solve directly. The standard approach is to

time-average the equations to obtain new ones which

describe the temporally averaged field variables. Such an

approach is beyond the scope of the present formulation,

and the flow is assumed laminar.



CHAPTER 4

NUMERICAL APPROACH

The governing equations for the mass, momentum, and

energy conservation given in the preceding chapter are

represented by a system of nonlinear partial differential

equations. These equations can describe some of the most

interesting phenomenon in the fluid and thermal sciences.

Unfortunately they are also some of the most difficult to

solve.

With few exceptions, (see for example Graebe127),

problems involving convection can not be solved by direct

integration of the partial differential equations. For

most problems we must resort to some numerical solution

method. In the approach used here, the finite element

method is used to solve the spatial problem along with a

recursive time marching algorithm based on the finite

difference method.

The finite element method is relatively new with most

of its development occurring after 1960. There are

several approaches to developing the finite element

equations including the variational method, the method of

weighted residuals, and the energy balance method. The

25
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classical variational method is quite general, however it

does require the existence of an exact variational form

for the governing equations. For many problems,

particularly in convective heat transfer, there are no

exact variational forms. This requirement has limited the

application of the variational method. Another procedure,

the method of weighted residuals, or Galerkin method, does

not require an alternate formulation of the physical

problem and in fact can be applied to almost any well-

posed system of differential equations. Oden 42 introduced

a method by which the finite element equations can be

developed from global energy considerations. This method

has also proven very useful in the solution of many

thermomechanical problems.

Of the methods mentioned above, the Galerkin method

has proven to be the most general and is the method chosen

for the formulation developed here.

The basic approach of the finite element method is to

divide the solution domain up into a finite number of

subdomains called elements. These elements are connected

at node points on the element boundaries. The behaviors

of the unknown field variables are then approximated

within each element by continuous functions expressed in

terms of nodal values of the field variables and their

derivatives. Substitution of this approximation into the

original differential equations and then integrating,

results in some error or residual. In the Galerkin
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method, linearly independent weighting functions are

chosen such that the residual is required to vanish in

some averaged sense over the entire solution domain. The

resulting equations for each element are assembled into a

set of coupled equations.

The coupled equations are then directly integrated in

time to yield the nodal values of the field variables.

This direct integration of the coupled equations uses a

recursion technique based on the finite difference method.

Approximations in the finite difference method, however,

introduce numerical errors. Though these errors can be

minimized as the time step used approaches zero, it is at

the expense of increasing computational time. Large time

steps, in contrast, can produce entirely unrealistic

behavior, including nonphysical oscillations which can

even become unstable. Development of the proper recursion

technique is thus of great practical importance and is

discussed more, later in this chapter.

Subdividinq the Domain

The first step in applying the finite element method

is to subdivide the solution domain into elements. The

selection of proper element type is still somewhat of an

art. Lower order polynomial elements are simplest to

formulate, but more elements are required for good

solution accuracy. Fewer higher order elements are needed
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for the same accuracy but require increased computation

time in the numerical integration of each element. In

general, to model a complicated boundary, it is usually

more efficient to use a large number of simple elements

rather than a few complex ones. ThUs, for most problems,

elements with interpolating functions of order greater

than 3 are seldom used.

In addition to computational efficiency, it is

important that we select element types with interpolation

functions that satisfy certain continuity and convergence

requirements. This is necessary to ensure accuracy during

integration and also that the approximate solution will

converge to the correct solution with increasingly finer

subdivisions (smaller elements). These requirements were

given by Felippa and Clough 19 and verified by Oliveira 43.

Specifically, they can be stated as

i. The field variable _ and its derivatives up to

one order less than the highest-order derivative

of the element (weak form) equations must be

continuous at the element iDte_faces.

2. The field variable # and its derivatives up to

the order of the highest-order derivative of the

element (weak form) equations must be continuous

within the element.

The first of these is known as the compatibility
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requirement and the second as the completeness

requirement. Compatibility requires that the field

variable and its principal derivatives be the same at

coincident nodes of neighboring elements. This ensures

that there will be no contribution to the finite element

equations from "gaps" at the element interfaces since the

boundary integrals of each element will cancel. The

completeness requirement ensures convergence to the

correct solution when, in the limit, the element size

shrinks to zero.

It is convenient to introduce a standard notation to

describe the degree of continuity of a field variable at

the element interfaces. If the field variable is

continuous at the element interfaces, _t is said to have

C O continuity. If, in addition, the second derivatives

are also continuous, there is C i continuity, and so on.

By choosing the internal energy, pressure and velocity

form of the governing equations only first derivatives of

the field variables appear. Thus only elements which

satisfy C O continuity are needed to satisfy the above

requirements.

But other considerations may also influence the

selection of proper element types. Several researchers

modeling fluid flow have established that the

interpolation functions for the velocity components must

be at least one order higher than the pressure

interpolation functions to prevent oscillations of the
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field variable solution. ¥amada, et al. 64 came to this

conclusion by using a variational formulation. Olson and

Tuann 45 showed that spurious rigid body modes in the

solution appear when this criteria is violated. Other

researchers who have supported this conclusion include

Hood and Taylor 31 and Bercovier and Pironneau 7. The

restriction on the interpolation functions for the

primitive variables arises from the uncoupled nature of

the Navier-Stokes and continuity equations. This is

because the continuity equation is simply a constraint on

the velocities rather than an equation which fully couples

velocities and pressure as the momentum equations do. A

number of researchers modeling fluid flow using finite

elements have concluded that quadratio interpolation

functions for velocity and linear interpolation functions

for pressure generally give the best performance 6. An

alternative approach to avoiding this problem is to

uncouple the velocities and pressure by using a segregated

method of solution. This is commonly done in finite

difference formulations of the fluid equations, but it

requires an additional convergence iteration to

alternately satisfy the continuity and momentum equations.

Two useful sets of rectangular elements are the

serendipity and Lagrangian families. The serendipity

elements shown in Figure 4.1 contain only boundary nodes

and their interpolation functions were derived by

inspection. The Lagrangian elements shown in Figure 4.2
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Bilinear Biquadratic Bicubic

Figure 4.1 The Serendipity Family of Elements
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A A
w w

Bilinear Biquadratic Bicubic

Figure 4.2 The Lagrangian Family of Elements

contain interior nodes and use the Lagrange polynomial as

its interpolating function. Both the serendipity and

Lagrangian element types have seen wide use in finite
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element analysis.

As mentioned earlier, the geometry of the problem may

also influence the selection of the element. One approach

to modeling complex arbitrarily shaped boundaries is to

use a body-fitted coordinate system. This approach can

however add significantly to the modeling complexity. An

alternative is to use curve-sided elements. Isoparametric

elements are particularly useful as curve-sided elements.

Isoparametric elements are elements whose geometry and

field variable representations are described by

polynomials of the same order. Using curve-sided

elements, significantly fewer elements are usually

required to fit a complex geometric boundary. Curved-

sided isoparametric elements are commonly formed from

either serindipity or Lagrangian elements.

Finally, other numerical considerations may also

influence the selection of the proper element type. The

numerical solution approach for the problem in this

research requires the use of element mass lumping to

prevent unrealistic oscillations in the field variables.

This will be further discussed in the section on solving

for the transient response. The use of element mass

lumping has been shown by Gresho, et al. 28 to yield

unstable solutions with the quadratic serindipity element

under certain conditions. The Lagrangian biquadratic

element however showed good accuracy and stability.

During the course of this research, stability problems
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were also observed when using the quadratic serindipity

elements with element mass lumping.

For the reasons given above, the 4-node Lagrangian

linear element was chosen for the pressure field and the

9-node Lagrangian biquadratic element was chosen for the

energy and velocity fields.

Besides the element selection, the subdivision of the

domain can have a significant influence on the solution.

It is easiest to generate a uniform element mesh, however,

this may not always provide the best representation of the

field. Usually more elements should be placed in regions

where the boundary is irregular. Also, in general, the

elements used should be well proportioned, with the ratio

of their largest dimensions to their smallest dimensions

near unity. Nevertheless, it can be acceptable to use

long thin elements if it is known that the field does not

vary greatly in the elements lengthwise direction.

Provided that elements have been selected which

satisfy the compatibility and completeness requirements,

increasing the number of elements will provide improved

solution accuracy. If there is an approximate solution to

the problem, the finite element model accuracy can be

improved by using a finer mesh in areas where high

gradients are expected in the field variable. This

increased accuracy is at the obvious expense of increased

computational effort. It is generally good practice to

obtain several solutions to a problem using an increasing
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number of elements. By comparing results it can then be

determined what is a sufficient number of elements for

good solution accuracy.

Once the element type has been chosen, the

interpolating functions for both the linear and quadratic

elements can now be developed. The Lagrange polynomial is

defined by

n

X_Xm(x) = x -x
k m

m=0

m_k

(x-x)...(x-x )(x-x )..(x-x )
o k-1 k+l n

(Xk--X0)" " "(Xk--Xk-I)(Xk--Xk+I) " " "(Xk-X )

(4.1)

Using the 4-node rectangular element and local coordinate

system defined by Figure 4.3 the variation of some field

variable g can be written as

+ N ({,7)_ + N ({,_)0 + N ({,7)_

where _ represents the nodal values of the field variable

and the interpolating functions N are given by

NI ({'7) = LI ({)LI (7), N2 ({'7) = L2 ({)L2 (7), etc.
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Figure 4.3 The 4-node Lagrangian Element

and Coordinate System

These interpolation functions, formed as products of the

Lagrange polynomial, are bilinear. The explicit

expression for node 1 follows:

_m

NI (_'D) = LI (_)LI (_) = _*-_2 × =_I -_4 -I-I -i-i

In this manner all of the linear Lagrangian interpolation
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functions can be developed and are given by

N 1
i = _ ({v-{-v+l)

1
N3 = _ ({V+{+V+I)

1
N2 = _ (-{n+{-n+l)

1
N4 = _- ({n+{-v-1)

(4.2)

The quadratic Lagrangian interpolation functions can be

developed similarly and are given by

N 1 ,_2 2= _ ({n- v-{n2 +{2 n )

N 1 2 2= X (_{n_{2n+{ +{_ )

1 2 2

1 q2 2N = _ (__v+{2v_{ +{2 )

N9 = i__2 _T)2 +_2 T]2

1
N2 = _ (__+ 2+_2 V__2 2 )

1 _2 2 ___2 2N 4 = _ (_+ -{ )

N 1 _{z 26 = _ "(_+_2 n-{_ )

(4.3)

1 __2 2N = _- (_,_+{2+_v2 )

After selecting the element type, the solution domain

is subdivided into a specified number of these elements.

Fitting a curved boundary such as shown in Figure 4.4

could be done with many small elements, however in this

case, a better fit would result if we could use curve-

sided elements as in Figure 4.5. Ergatoudis et al. 17 were

among the first to develop a general approach to creating

such elements. Curved-sided elements are developed by
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Figure 4.5 Curve-sided Element
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transforming or mapping simple geometric shapes in some

local coordinate system (_-_) into distorted shapes in the

global Cartesian coordinate system (x-y). To construct a

typical element such as is shown in Figure 4.5 we must

start with a simpler "parent" element. Consider a parent

element such as the 9-node quadratic Lagrangian element

shown in Figure 4.6. The coordinates in the _-_ plane may

be transformed into the x-y plane using mapping functions

of exactly the same form as the interpolation functions.

These are given by

9 9

x = _ N ((,_)x, and y = _ N (_,_)y:

i =i i =i

(4.4)

When making this transformation we must of course

ensure that for every point in the local _-_ coordinate

system there is a unique corresponding point in global x-y

coordinate system. If the transformation is not unique,

the element can be greatly distorted causing unpredictable

results on the solution.

This transformation technique can be useful in

generating a set of element coordinates for a region in

the solution domain such as that shown earlier. The

region coordinates in the global cartesian system would

become the x i and Yi in equation (4.4). For a division of

nine elements in the "parent" region shown in Figure 4.7,
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qF

") =-I

Figure 4.6 The 9-node Quadratic Lagrangian Element

the interpolation functions Ni(_,_) are evaluated at the

appropriate _ and _ having discrete values of -1, -0.667,

0.333, 0, -0.333, -0.667, and I. The resulting elements

in the global cartesian system are shown in Figure 4.8.

This technique is quite useful for automatic element

(grid) generation and is not restricted to equal numbers

of divisions in the _ and _ directions. It is also

possible to make the grid mesh finer in an area by slight

shifts in the discrete _ and _ values given above. For

further discussion on grid generation techniques see

Zienkiewicz, et al. 65.

Before substituting the interpolating functions into

the finite element equations, it is also necessary to
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develop expressions for their derivatives. Following

Huebner 32, the variation of some field variable # within

an element having r nodes is again expressed as

r

e t i

i=1

(4.5)

The derivatives of the field variable can also be

evaluated by

r r

i t and 8__ = i
ax ax ± ay ay

i=I i=1

(4.6)
i

To evaluate the element matrices we must also express

aNi/ax and aNi/ay in terms of local coordinates _ and _.

Applying the chain rule of differentiation yields

aN,

[aq

+LjaC

ax

aN i

ON

8N i

ON
(4.7)

where [J] is the Jacobian matrix. The Jacobian is

evaluated using
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Figure 4.8 Curve-sided Elements in the Cartesian System
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[J(_,_)] =

r r

(( .)x --*i a{ ({'_)Yl
i=I i=i

r aN

_ (l,_)x g-_ (_,_)y_
i=i i=i'

(4.8)

Rearranging, the derivatives of the shape functions

in the two coordinate system are related by the inverse of

the Jacobian as follows:

SN i t_-_ =

lay

j] 1 / for i = 1,2, .... ,r (4.9)

From the above equations we can find the partial

derivatives of the field variable in terms of the

transformed coordinates _ and _ using

E,IINIa,]j!  aN1 a.R(4.10)

Finally, from advanced calculus we can express the

differential area dx dy in terms of d_ dD using
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dx dy = IJi d. (4.11)

in which IJl is the determinant of the Jacobian.

The validity of the element equations depends on the

existence of the inverse of the Jacobian for each element.

Also, the _-_ to x-y coordinate mapping discussed earlier

is unique only if the inverse of the Jacobian exists. A

useful method for determining this uniqueness and the

validity of the mapping is to evaluate the determinant of

the Jacobian for all elements. If the sign of the

determinant does not change throughout the solution

domain, an acceptable mapping will be assured.

Formulatinu the Element Euuations

To formulate the finite element equations from the

governing equations we must apply the Galerkin method,

substitute the interpolation functions for the field

variables and their derivatives, and then perform the

numerical integration on an element basis.

The velocity, pressure, and energy distribution

within each element can be approximated by

u(x,y,t) = £."(x,y)] (u(t)) (4.12)
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v(x,y,t) = INv (x,y)J (v(t)) (4.13)

P(x,y,t) = _P (x,y)J (P(t) } (4.14)

e(x,y,t) = _" (x,y)J (e(t)) (4.15)

Before applying the Galerkin method to the

conservation of energy equation it is necessary to first

linearize the nonlinear convective terms. Let u* and v*

be an approximate solution to the velocity field and P* be

an approximate solution to the pressure field (such as the

results from a previous iteration). Now applying the

Galerkin method, the linearized energy equation yields

0N ( ae *ae *ae p. aU*+ p*a__vv* (4.16)p_ + pu _ + pv _ + ax ay

aT/kaT 1 aT(kaT 1- _t _J - _ _j ) da = o

Integrating the last two conduction terms by parts

using Green's theorem
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the energy equation becomes

faNl aNi aT)

+k_ dT= 0

(4.19)

The surface integral in the equation above is the natural

boundary condition and allows for the introduction of the

prescribed heat flux, q, boundary condition.

Substituting the approximations for the field

variables and rearranging, the energy equation for the

interpolating function at node i becomes
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r {ae)

+fo.:{'L_"'_"'_-_+[_v._j)oo{.}
fp._" p. av'), da

r {aN k?T] f_l k_l d_
-jnta'-_ ax) + I,ay ay}

(4.20)

Applying the Galerkin method now to the momentum

equations it is necessary to also linearize the nonlinear

convective terms, by again letting u* and v* be an

approximate solution to the velocity field. Taking the x-

direction momentum equation and applying Galerkin's

criterion yields

[ NV ( o_U *au *au a(o -P) 01" ) (4.21)x -xy + Pgx d0 = 0'0 _ P-a-t + pu _-_ + pv ay ax ay

Integrating the viscous force terms by parts using Green's

theorem

letting a = Nv b = o n + T
t x t xy j



47

yields

"') )+ ---'Y d_ = -P)_ + T _ dZ
ay x i (°x i xy j

( aNi- (o_-P)_-_ + T
Q x7

aNi ) d0
ay

(4.22)

Now defining

G" ---- (O'x -P) _ +T
x i xy .I

(4.23)

and introducing the velocity components with

x = 2 au 2o _-_ _v.v

2 av 2 (4.24)

T = _ +
x7

The x-momentum equation becomes
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NV( au au au)

r 8Ni ( 8u 2 8u 2 8v_+ _n_ 2_ax 3_ax _) dO

r aNi .r 8Nl

NV _ --
+ Q iPgx dQ = N o

P dn

(4.25)

Substituting the approximations for the field variables

and rearranging, the x-momentum equation for node i of the

element becomes

(4.26)

The integral over the surface X is the natural boundary

condition and can be used to introduce surface tractions.

The y momentum equation can be developed similarly

and is given by
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n 3 ay _ + _ _ dQ u (4.27)

+Jo(.:L,-'_+.:L,_,,"_-_)oo{v}

r aNi t

Finally, applying the Galerkin method to the

conservation of mass equation (continuity), using

weighting factors equal to the interpolating functions for

pressure at each node i yields

t [a_uN P a__x]
j + d0 - 0 (4 28)
n i Lax ay J

Substituting the approximations for the field variables u

and v yields

(4.29)

It is important to note that all three conservation

equations are applied throughout the solution domain.

However, since there is no motion of the material in the
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solid something must be done to prevent convective

transport and influence of mass on the buoyant forcing

function.

The simplest method for preventing fluid motion in

the solid is to set the velocities u* and v* to zero and

to increase the viscosity to some large value for those

nodes which are in the solid state. As discussed earlier,

during the phase change process, some materials develop a

mushy region in which the interface between the phases is

not sharp. If information is available on how the

viscosity (and other properties) of the material varies as

it undergoes phase change, it can be used in the material

property data to improve the modeling of the flow near the

phase front. For the cases studied in this research, the

phase front was relatively sharp and the exact value of

the assumed viscosity in the two phase region had little

influence on the results. Also, because the results from

the fluid equations are not applicable within the solid

region, the exact influence of the viscosity in that

region is unimportant.

The second problem alluded to above involves the

influence of the density distribution within the solid on

the overall buoyant forcing function. In reality the body

forces on the solid are balanced by internal and boundary

stresses. In this formulation, however, no such mechanism

exists since no equations from solid mechanics were

included. Because of this problem, incorrect body force
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terms can develop if the density of the solid is

significantly different from that of the liquid. To

prevent this, the buoyant force term is first reformulated

in terms of density change about a reference density such

as

J'_ Po i

This approach is quite common in formulations of the

Navier-Stokes equations which use the coefficient of

thermal expansion. The reference density P0 is taken to

be the density of the fluid at the fusion temperature. To

prevent the influence of the solid in £he buoyant force

terms, the density is set equal to the reference density

for those nodes which are in the solid region. Note that

this is done only in the evaluation of this integral while

all other integrals are evaluated using the appropriate

density for each state.

Because the fluid motion is influenced by buoyancy

forces and the material properties vary with time, the

energy, momentum, and mass equations are directly coupled

and must be solved simultaneously. Two approaches have

been used in the past to solve the steady solutions.

Taylor and Ijam 57 solved the equations simultaneously.

Gartling 24 used an algorithm in which the equations are

segregated and the solution alternates between the them.
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During the course of this research, both approaches were

employed and evaluated. The method which solves the three

equations simultaneously was found to require

significantly more computer memory and computations in

solving the equations. The alternating solution method

required an iterative algorithm, however, this did not

substantially change the overall algorithm. This is

because iterations are required to satisfy the nonlinear

terms in the Navier-Stokes equations. Based on these

studies, the segregated approach to solving the energy and

flow equations was adopted in the present analysis.

The energy, momentum, and mass equations above were

given for the weighting functions at each node i in the

element. By inspection, we can write-the energy equation

for all nodes of each element as

[ C ] { e } + e K_ ] { e } = { Rq + Rp + R¢ } (4.30)

Similarly, we can write the momentum and continuity

equations for all nodes of each element as
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MIoIo

01"10
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Lax I d_ J_LPV*N'jLay J dn

[,._] ---fol_vl[,,j,_oo

[_ ] rl_ __ Jfl/ax I
) aNVl

= L_ j d_

[aN_ }1 aNVl

/ I aNv I
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To evaluate the finite element matrices requires

integrating functions of the form

I(x,y) d_ = I (_,_) IJl d_ d_ (4.32)
f2 -1 -1

The Jacobian is a function of _ and _ and cannot be

explicitly evaluated because the coefficients are

polynomials, thus some type of numerical integration must

be used. The Gauss-Legendre method is chosen here because

it requires relatively few sampling points to obtain a

good degree of accuracy. This method involves evaluating

the function at the sampling points and weighting the

results as follows

n n

/ (_,_) IJl d{ d,-= W W / ({i,,j) (4.33)
-z i j

i=0 j =0

Table 4.1 gives the location and weights for the Gauss-

Legendre Quadrature up to order 4
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Location and Weights for Gauss-Legendre

Quadrature to Order 4

Order

n=l

n=2

n=3

n=4

Location

±0.5773502691

0.0000000000

±0.7745966692

±0.3399810435

±0.8611363115

0.0000000000

±0.5384693101

±0.9061798459

Weight

1.0000000000

0.8888888889

0.5555555556

0.6521451548

0.3478548451

0.5688888889

0.4786286704

0.2369268850

Figure 4.9 shows an example of the location of these

sampling points for a typical element using a Gauss-

Legendre Quadrature of order 2.

To accurately evaluate the volume integrals, Gauss-

Legendre integration of order 1 is required for the

bilinear elements and order 2 for the biquadratic

elements.

Assembling the System Euuations

Once the behavior of each element has been developed,

the overall system is modeled by assembling these element

equations into a set of system equations. To do this, the

element equations, which were evaluated at the nodes of
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Figure 4.9 Location of the Gauss-Legendre Integration

(Order 2) Sampling Points in a Typical
Element

each element, must now be transformed into the global node

numbering scheme. The numbering schemes for the quadratic

Lagrangian element and the global node numbering scheme

for an example four element region are shown in Figure

4.10. For the sake of explanation assume there is a

single field variable at each node, the total number of

system nodal variables is equal to the number of global

nodes, n (i.e. 25 in Figure 4.10). The nine local element
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nodes for the upper left element in Figure 4.10 correspond

to the global nodes Ii, 12, 13, 8, 3, 2, i, 6, and 7. The

7 6 5 1 2 3 4 5

_ 'qw

8 9 4

2 3

Local (Element)

Node Numbering

6 7 8 9 10

• • q

11 12 13 14 15

16 17 18 19 20
• ( •

21 22 23 24 25
A • A
w

Global Nocle Numbering

Figure 4.10 Transformation of the Local Node Numbering to

the Global Node Numbering Scheme

node relationship is only slightly more complicated for

the case where multiple field variables exist at the same

geometric node location. The procedure for assembling the

system equations is as follows:

i. For n global nodes, set up two n × n and one n ×

1 null matrices (all zero entries) as the system
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mass, stiffness and resultant matrices.

2. Take one element and use the relationship between

the local and global node numbers to replace the

indices in the element matrices with the

corresponding global node numbers.

3. Insert those terms into the appropriate locations

in the system matrices. If a term is inserted in

a location where another term has already been

placed, it should be added to the value at that

location.

4. Repeat the procedure starting at step 2 for all

of the elements.

The result will be a system of equations of the form

nXn nXl nXn nX I n× 1

[, ]1,} (4.34)

where again # is the unknown field variables, [M] the mass

matrix, [K] the stiffness matrix, and (R} the resultant

column matrix.

Solvinq for the Transient Response

The solution of the final set of simultaneous

nonlinear ordinary differential equations is a formidable
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task combining transient time integration with an

iteration scheme at each time step to handle the nonlinear

terms.

An approach to directly integrating these coupled

equations in time is to use recursive algorithms based on

the finite difference method. Let tj be a typical time in

the transient response such that

t =t +At ,
j+z j

for j=0,1,2,...

A general family of algorithms can be developed by

introducing a parameter e such that

t =t +eAt , for 0s0_i
J+O

The system equations at time tj÷ e can be written as

(4.3s)

Introducing the approximations
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I01  I-i°lJ

(4.36)

Substituting these approximations into the system

equations yields

J j+l

(4.37)

Rearranging, a general recursion formula for calculating

the unknown field variables (_}j+l at the end of the time

step to the known values (#}j at the start of the time

step is given by

(4.38)
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in which

j+1 (e-1)[K] + [M] e{R}(1-0) R J j+1

This equation represents a family of popular time-marching

algorithms. Table 4.2 describes some of the members of

this family.

Table 4.2 Characteristics of Recursive

Time-MarchingAlgori_

Algorithm 8 Accuracy Stability

Euler or Forward

Difference

Crank-Nicolson

Galerkin

Backward Difference

0

1/2

2/3

1

ist Order

2nd Order

ist Order

Ist Order

Conditional

Unconditional

Unconditional

Unconditional

All of the algorithms given in Table 4.2 are first

order accurate with the exception of the Crank-Nicolson

method which is second order accurate. The terms firsr

order and second order refer to the truncation errors in

the finite difference approximations. First order

accuracy means that the error is proportional to the first

power of the time step At, and second order accuracy means
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the error is proportional to the second power of At.

Many studies have been made to evaluate the relative

accuracy of each of the methods given in Table 4.2.

Perhaps one of the most relevant was performed by Hogge 29

in which he studied a nonlinear heat transfer problem.

His detailed investigation of the relative accuracy of the

various methods concluded that theCrank-Nicolson scheme

(8=1/2) is indeed the most accurate of these methods. He

did note however, that more sophisticated schemes spanning

several time steps can give even better accuracy.

Table 4.2 also characterizes the stability of the

various methods. Stability means that the computed

response does not oscillate and grow without bounds

unrealistically. Stability is ensure_ for eZl/2. All of

the methods given in Table 4.2 are unconditionally stable

except the Euler forward difference method. For methods

where e<i/2 a stable solution results only for time steps

less than some critical value. It should be noted however

that the selection of time step is important even for

methods with eZl/2. Though the computed response with one

of these methods will not grow unrealistically without

bound, it may exhibit spurious oscillations and decreased

accuracy with a very large time step. With either method

it is good practice to solve the integration with several

different time steps and compare the results.

In addition to accuracy and stability, other

considerations effect the selection of time integration
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algorithm. The two common approaches to solving the

overall system of equations are the explicit forward

difference scheme and the implicit one parameter e

schemes.

The explicit forward difference scheme computes the

field variables at time tj+ 1 from a set of uncoupled

system equations. It does however require a lumped mass

matrix. The term lumped is used to differentiate it from

the original (or consistent) mass matrix. Lumped matrices

are formed by assigning each node an amount of mass which

can be attributed to that location. The most common

approach to forming a lumped mass matrix is to sum the

coefficients of the rows of the consistent mass matrix and

use these as terms along the diagonal.. The explicit

forward difference scheme using a lumped mass matrix may

result in a significant computational savings over

implicit schemes because the field variable can be

computed without solving the system of simultaneous

equations at each iteration. Again it has the

disadvantage of only conditional stability with selection

of the time step. It also requires a constant time step

throughout the solution.

The implicit ,,e, algorithms compute the field

variables from a coupled set of system equations. The

time step for the implicit algorithms again is not

restricted by the stability constraint discussed earlier.

In addition, the time step can be varied throughout the
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transient solution. This is a significant advantage of

the implicit algorithms for this research problem. During

the solution of a phase change problem, the maximum

allowable time step may vary significantly. This is

because the solution domain may be all solid, multi-phase,

or fluid. Each of these situations could have very

different rates of response. For example, during the time

the material is all solid and only the energy equation is

important, the allowable time step might be significantly

larger than when fluid is present and results from the

momentum equations become important.

Implicit algorithms permit either lumped or

consistent mass matrices. However, the choice of lumped

versus consistent mass matrices is not always be easily

resolved. Considering their formulation, consistent mass

matrices are thought to be more accurate. Many

researchers, however, have found insignificant loss of

accuracy using the lumped approach. In fact, virtually

all finite difference formulations use the lumped mass

approach. Emery, et al. 16 found that the consistent

approach could sometimes even predict unrealistic

oscillations in the temperature distributions. This was

most often observed near areas of sharp transients. The

lumped approach however gave solutions which were

intuitively obvious. During the course of this research,

I also observed unrealistic oscillations in the field

variables while using a consistent mass matrix approach.
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This was particularly evident near the phase change front

where the material properties varied greatly.

Because of the considerations and observations

discussed above, the lumped mass, implicit Crank-Nicolson

scheme was adopted for this research.

After application of the recursive time integration

approach, the result will be a reduced set of system

equations of the form

]{0}o (4.39)

It is now necessary to account for any boundary

conditions which were not already applied as natural

boundary conditions. In particular, these include any

prescribed value boundary conditions. Usually, at least

one and sometimes more than one nodal value must be

prescribed to make the system equations nonsingular and

provide a unique solution. There are several ways to

apply these prescribed boundary conditions and modify the

set of system equations. The one chosen here is

relatively straightforward and can be described best by

example. Suppose there are only four system equations

given by
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ikllkkIJi
12 13 14 1

k21 k22 k23 k2_ _2

k31 k3a k33 k34 _a
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1
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2
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3

r
4

Consider applying prescribed nodal values specified as

I 3

The modified system equations will become

Note that once these prescribed boundary conditions

have been applied, the number of equations and nodal

unknowns to be solved for is reduced since it is not

necessary to solve for the prescribed values. For

problems with many prescribed boundary values, such as

flow inside a containment vessel, the size of the system

equations can be reduced significantly. From a

computational standpoint, this can result in a substantial

decrease in the time to invert the large system matrix.

Note also that since the dependent variable in the

energy equation is internal energy, prescribed temperature

boundary conditions must be handled with an additional
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step. This step is simply to apply the equation of state

model to convert the prescribed temperature value to a

prescribed internal energy value.

Before summarizing the overall numerical approach,

some discussion is warranted on the method for determining

the state and material properties used throughout the

solution domain. There were several requirements for this

equation of state and material property model. First, the

method should be able to describe reasonably complex

material property characteristics. Second, the amount of

input data to describe these material properties should be

minimal. And finally, the method should be

computationally efficient. Usually, either tabular data

interpolation or "curve fitting" approaches are used for

such models. Since two independent material properties

are used (e.g. pressure and internal energy) the tabular

data approach requires double interpolation and the

"curve" in the second approach is really a surface.

Because of the requirements discussed above, a

surface fitting approach to the material state properties

was developed. In such an approach, the thermodynamic

surface representing the dependent property as a function

of the two independent properties is represented by one or

more regions as shown in Figure 4.11. These regions are

described by quadrilaterals defined by values at eight

points along their sides. The point representing the

independent properties is projected onto one of these
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Figure 4.11 Surface Fitting of the Material
State Properties

quadrilaterals. A double quadratic regression analysis of

that quadrilateral is then used to yield the value of the

dependent property.

The overall numerical solution procedure described in

this chapter is summarized in Table 4.3. This numerical

solution procedure is implemented in the computer program,

PHASTRAN, which is described in Appendix A and listed in

Appendix B.
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Table 4.3 Overall Solution Procedure

Initial calculations

Read input data
Generate element coordinates

Initialize field variables

Evaluate material state properties

At each time step
Increment time

Iterate to converge nonlinear terms
Form the element equations

Assemble [M], [K], and {R) syste m matrices

Modify system matrices to form [K] and {R}

Apply the prescribed boundary conditions
Solve the simultaneous equations

Updat_ the m_terial state properties
Set u- and v to zero in the solid

Check for convergence of the field variables

Advance to the next time step
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RESULTS AND VERIFICATION

Direct experimental verification of the multi-

dimensional phase change problem is difficult at best.

Verification is especially difficult for containment

vessels with complicated shapes and nonuniform boundary

conditions. Even for very simple geometries, verification

would rely on results from other numerical methods or the

very few experimental observations of _he combined

transient effects that do exist. For this research, an

alternative but indirect approach was chosen in which the

individual phenomena are verified with simple geometries

for which there are known and well established solutions.

This approach resulted in a number of test cases which are

summarized in Table 5.1. These cases are presented

individually in the remainder of this chapter. Table 5.1

characterizes each case by the geometric space (1-

dimensional or 2-dimensional) of the problem, the

thermodynamic state of the material, and the principle

phenomena of interest. Note that even though the

particular case can be characterized as 1-dimensional, the

2-dimensional analysis was used.

72
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The last case gives the solution to the general

problem combining all the phenomena of interest. This

case demonstrates the ability of this analysis approach to

solving a realistic problem representing several

interacting fluid/thermal phenomena_ It could also serve

as a test case for comparison of similar analyses which

other researchers may be developing.

A discussion of the computer resource usage is given

at the end of the chapter.

Table 5.1 Summary of Cases

Case

1

2

3

4

Space

I-D

2-D

Material State

Solid

Solid-Liquid

2-D Liquid

2-D Solid-Liquid

Phenomena

Conduction, with

Prescribed Temperatures

Phase Change, by
Conduction only with

Prescribed Temperatures

Buoyancy-Driven
Convection with

Prescribed Temperatures

Phase Change, by
Conduction and Buoyancy
Driven Convection
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Case 1: Conduction Only

As was discussed in Chapter 3, the formulation of the

energy equation is based on internal energy instead of the

more common temperature and specific heat approach. To

ensure the validity of such an approach, Case 1 considers

a simple transient problem for conduction heat transfer.

For this case, material properties are constant throughout

the solution domain and the material always remains in the

solid state. Figure 5.1 describes the solution domain as

well as the boundary and initial conditions. The problem

consists of a slab of material initially at a uniform

temperature, TO . At time zero the surface temperature of

one side is suddenly changed to T I . Note that since the

upper and lower sides are insulated, this problem is

actually one dimensional.

Exact solutions to the problem of Case 1 are widely

available, for example Kreith 35. The results of such

solutions are often presented in terms of a nondimensional

temperature versus the Fourier number defined by

at
F =

o (2D)2

where a is the thermal diffusivity defined by
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Sudden Change

in Surface

Temperature

T=T I

Initial

Temperature

T-T 0

Figure5.1

r

X

Description of Case 1

k

pC

and D is the thickness of the material.

Though this problem is really one-dimensional, for

convenience, the solution domain was discretized into a

total of 25 equal elements, with 5 element divisions along

each of the x and y directions. The time step used

corresponds to a Fourier number of 0.0005. Figure 5.2
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1 I Exact Solution

0.8 • Present Analysis
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T_I 0.4

0.2
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Figure 5.2 Calculated Texperature8 for Case 1

shows the calculated temperature distributions at four

times. These values are within one percent of the exact

values for this problem. During the course of this

research, many other similar problems involving conduction

heat transfer were solved. These included cases with both

prescribed temperatures and/or prescribed heat flux.

Results from these cases as well as those of other

investigators (see for example White 62) has confirmed the

validity of the internal energy formulation of the energy

equation in calculating transient conduction heat
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transfer.

Case 2: Phase Chanqe by Conduction

Several problems were studied involving phase change

by conduction. For 1-dimensional space, exact solutions

exist for prescribed temperature boundary conditions as

well as cases with precribed heat flux conditions.

Results from the present formulation for such cases showed

excellent agreement with exact solutions. A more complex

case is that of multi-dimensional phase change. Case 2

models 2-dimensional phase change by conduction with

prescribed temperature boundary conditions. Specifically

the problem consists of a prism of square cross-section

which is initially in the liquid state at the fusion

temperature. Prescribed temperatures which are lower than

the fusion temperature are applied to the surface of the

prism, and it solidifies with time. Due to the symmetry

of the problem, only one quarter of the cross-section need

be considered with two boundaries maintained at the

prescribed temperature as shown in Figure 5.3. For

convenience the problem can be described by
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Figure 5.3 Description of Case 2
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Figure 5.4 Calculated Loci of Interface for Case 2

1

(j = ...LD
dimensionless interface location

in which D is a convenient reference length and the

subscript s denotes properties of the solid.

This problem has been studied by several researchers

in the past including Poots 50, Lazaridis 37 and Crowley 14.

The numerical data used here is the same as was used by
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those researchers. These values are A*=1.5613, e_=l, and

d1=dz=4 , where d I and d 2 are the normalized dimensions of

the quarter square section.

Because the density is constant throughout the

solution domain, no effects of flow in the liquid were

considered and only the energy equation was solved. For

this problem, a total of 49 equal square elements were

used with a time step corresponding to a T of 0.005.

Figure 5.4 shows the calculated interface at various times

during the solidification. The interface locations are

also presented in terms of fraction of solidified matter

along the diagonal and at the insulated boundaries in

Figures 5.5 and 5.6, respectively. The calculated results

compare quite well with the results from other

researchers. Though no exact solution to this problem

exists, a similarity solution for an infinite medium is

also given. The calculated results of the present

analysis for the finite medium compare favorably with the

infinite medium analysis initially. At later times, the

infinite medium solution predicts a slightly faster

solidification. This is expected since end effects in the

infinite medium allow for heat conduction out of the

corner, while ends for the finite medium are effectively

insulated.
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Buovancv-Drive_ CQDv_ction

Flow inside a square cavity is one of the simplest

problems in convection and is often used to test the

validity of fluid analysis methods. Case 3 is an example

of buoyancy driven flow in a square cavity. Figure 5.7

describes the solution domain and boundary conditions.

For this case, one side of the square cavity is maintained

at a constant temperature of T I . The opposite side is at

a higher temperature T 2 . The velocities of the fluid are

prescribed to zero at the container wall. The Prandtl

number of the fluid was chosen to be i.

The dimensionless Rayleigh number, defined by

Ra =
g_ (T 2 -T I ) D 3

_a

is used to characterize the flow. The coefficient of

thermal expansion, _, in the definition of the Rayleigh

number above is defined by

_ = (I - P")Po _i

where the 0 subscript denotes some reference state, and AT

is the change in temperature from that reference state.
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Figure 5.7 Description of Case

For this problem, a total of 49 equal sized square

elements were used. Figures 5.8, 5.9, and 5.10 show the

calculated fluid velocity fields and temperatures at

Rayleigh numbers of 103 , 104 , and l0 s . No cases were

calculated for higher Rayleigh numbers, however, no

stability problems were observed at a Rayleigh number of

105 . The calculated results compare well qualitatively

with similar analyses by Pepper and Cooper 49. Pepper and

Cooper also compiled data from the literature for the

buoyancy driven cavity flow problem described above. This
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10.8 10.9

Figure 5.8 Calculated Fluid Velocity Vectors and

Normalized Temperature Contours f_r
Case 3 at a Raylelgh Number of 10 _

Figure 5.9 Calculated Fluid VelocityVectors and
Normalized Temperture Contours fo

Case 3 at a RayleighNtmaber of 10 _
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data is presented in terms of an average Nusselt number

given by

Nu -- dy
x--0

0

The Nusselt number above is dimensionless by normalizing

with respect to the wall temperatures and letting the

dimension D be i. Results from the present analysis are

given in Table 5.2 and graphically in Figure 5.11 along

with the results from other researchers.

Table 5.2 Calculated Nusselt Numbers for Case 3

Ra Nu

103 i. II

104 2.40

105 5.17

Figure 5.11 shows excellent agreement between the

present analysis and previously published data.

In addition to this problem, several other cases

involving free and forced convection were studied during

this research. One case considered driven cavity flow

(forced convection) without buoyancy. In this case three
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Figure 5.10 Calculated Fluid Velocity Vectors and

Norlalized Teaperature Contours f_r
Case 3 at a Rayleigh-Number of 10
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sides of the square cavity are maintained at a constant

temperature of T I . The fourth side is at a temperature

T2, and moves with a velocity V. The predicted velocity

and temperature contours compared well qualitatively with

similar analyses by Chen, et al.13, '

Case 4: Combined Conduction. Convection.

and Phase Change

The last case gives the solution to the general problem

combining conduction, convection, and phase change.

Figure 5.12 shows the solution domain along with the

boundary and initial conditions. The problem consists of

a material inside a container of square cross-section.

The top and bottom of the container are maintained at

constant temperatures above and below the fusion

temperature of the material. Since the container is

initially at rest and not subject to a gravitational

field, there is no motion in the liquid phase. The

initial temperature distribution varies linearly between

T I and T 2 and flat phase front has formed perpendicular to

the direction of the temperature gradient. At time zero,

the material is subjected to an acceleration causing

buoyancy-driven convection in the fluid. This convective

flow changes the heat transfer and thus affects the

location of the phase front.

Table 5.3 gives the numerical values for the boundary
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Figure 5.12 Description of Case 4

conditions, material properties, and geometry of Case 4.

The complexity of this problem is apparent from the

number of physical constants listed in Table 5.3. Even if

dimensional analysis were applied to this problem, over

ten dimensionless groups would result. That many

dimensionless numbers would not significantly improve the

description of the problem, thus only the conventional

dimensionless parameters are given here.
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Table 5.3 Physical Properties and Conditions for Case 4

Symbol

Tf

TI

Tz

P,

tl
C

a

C1
L
k

g
D
t

Description

Fusion Temperature

Prescribed Low Temperature

Prescribed High Temperature

Solid density

Liquid density @ Tz .
Liquid thermal expanslvity

Dynamic viscosity

Solid specific heat

Liquid specific heat
Latent heat of fusion

Solid thermal conductivity

Liquid thermal conductivity
Acceleration

Length of container side
time

Value

0.0°C

-0.5oC
1.5°C

i000 kg/m 3

1000 kg/m 3

o.ooi /°c
0. 001 kg/

O

i000 J/kg C
O

i000 J/kg C

i000 J/kg
1 W/m°C

1 W/m°C

0.02 m/s z

0.i m

S

The Rayleigh number, characterizing the buoyancy

driven convection, and given by

g_(T 2 - T )D 3
Ra = f = 3x104

wa

The Prandtl number, characterizing the fluid's ratio

of momentum and thermal diffusivity, and given by

W
Pr =--= 1.0

a

The Jakob number, characterizing the material's ratio
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of specific heat to latent heat capacity, and given by

C (T - T 1 )
Ja = = 0.5

L

In addition, we may define dimensionless temperatures

given by

T - T
e = i z = -0.25
i T - T

2 1

and

T - T
e = 2 z =0.75
2 T - T

2 1

Finally, we may define a dimensionless time parameter

given by

a t
l

Ir _

D_

For this problem a total of 49 equal square elements

were used and the time step corresponded to a T of 0.0002.

Figures 5.13 through 5.23 show the calculated results for



91

Case 4 at various times during the phase change process.

These results include normalized isotherms, velocity

vectors, and the location of the liquid/solid phase front.

The development of the fluid flow and its effect on the

heat transfer can be seen at the early time steps. The

interesting aspect of this example is the definite

influence of the fluid flow on the heat transfer and the

resulting movement of the phase front. Steady state is

reached at T =0.2 with a phase front significantly

different from the flat front formed initially under

conditions of no convective flow.
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at T=0.0
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Figure 5.16 Normalized Isotherms, Velocity Vectors,

and Phase Distribution for Case 4

at T=0.01
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Figure 5.19 Normalized Isotherms, Velocity Vectors,
and Phase Distribution for Case 4

at T=0.04
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Figure 5.20 Normalized Isotherms, Velocity Vectors,

and Phase Distribution for Case 4

at T=0.05
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Figure 5.21 Normalized Isotherms, Velocity Vectors,
and Phase Distribution for Case 4
at T=0.1
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Figure 5.22 Normalized Isotherms, Velocity Vectors,
and Phase Distribution for Case 4

at T=0.15
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Figure 5.23 Normalized Isothexls, Velocity Vectors,
and Phase Distribution for Case 4

at T=0.2
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Computer Resource Usaae

Computer usage is of importance to most numerical

modelers. Table 5.4 shows the computer time usage for

each of the cases presented. The computer system used was

an AMDAHL 5870 with an MVSXA operating system. It is

important to note, that these cases were not fully

optimized in terms of domain discretization or time step

to provide minimum CPU times.

Table 5.4 CPU Times of Verification Cases

Case

1

2

3

4

CPU Time,

seconds

696

16470

15035

145700

CPU Time

# Time Steps

1.74

8.24

150.4

145.7

The CPU times given in Table 5.4 are long and could

result in significant expense on a pay for time computer

system. The intended use of this analytical model,

however, is in the aerospace industry and government with

institutional computational facilities devoted to such

tasks. Where no other similar analysis tool is available,
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the comparison may be between these computer costs and the

need for a space flight experiment, for example, the cost

of which can also be substantial.

It should also be noted that these CPU times are not

unusual for modeling phase change problems with

convection. Schneider 52 cites researchers quoting CPU

times of 50000 seconds on a CDC 6500 computer, for similar

phase change problems. Further discussion on computer

usage and possible areas of improvement can be found in

the next chapter.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The work presented develops a solution approach to

the combined conservation laws of energy, momentum, and

mass. This approach is quite general and provides a

method to analyze a variety of fluid and thermal problems

including those with phase change.

The finite element method, being an integral method

provides a natural means to implementing the internal

energy formulation of the phase change problem. Using

elements with quadratic interpolation functions, the

interface can be tracked quite accurately. Finite

difference formulations to date only provide information

on the interface location to within on mesh spacing.

Results from those analyses show jagged interfaces (see

Schneider 52) that can influence convective flow in the

liquid.

The analytic approach was implemented in a computer

program and results were verified by investigating

individual phenomenon and comparing with known solutions.

In general, the approach yields solutions with good

engineering accuracy. The predicted results for a problem

105
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similar to that described in Chapter 3 were presented for

comparison by other researchers who may develop similar

analytical methods in the future.

One area of concern for the present approach is the

high computer resource usage. The majority of the

computer time is incurred in forming and then inverting

the large set of system equations needed to converge the

nonlinearities and achieve a valid solution.

One way of reducing the computer time requirements by

improving the algorithm may be to incorporate a Newton-

Raphson iteration scheme to converge for the

nonlinearities. For a further discussion on the

application of of such methods, see Geradin, et al. 25.

Another approach to reducing computational times

would be to improve the simultaneous equation solver. The

matrices representing the system equations are

characteristically sparse with nonzero coefficients

located close to the diagonal. The use of a banded matrix

solver could significantly reduce computer time.

Fortunately, future trends will continue to reduce

the computational times and costs. The operation of the

computer program on a 3090 class computer with vector

optimizing hardware should reduce CPU times by about an

order of magnitude. This trend of increased computational

capability of the hardware will continue in the future.

Also the development of efficient large matrix solvers is

undergoing much research and is a very important aspect of
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numerical modeling of fluid/thermal systems.

There are several obvious extensions to this work.

First, this approach can easily be modified to analyze 3-

dimensional space systems. Nothing in the formulation

should prevent this and only the available computational

capabilities might present a restriction on the geometric

complexity of the problem.

Further investigation is also warranted in the use of

consistent mass matrices for the inertia terms in the

energy and momentum equations. Though the lumped mass

matrices are by far the most common, there is concern that

the method of lumping might contribute to inaccuracies

particularly for highly distorted curve-sided elements.

Though I personally believe that %he internal energy

or enthalpy method is the only practical method for

modeling the phase change problem in 3-dimensional space,

development of other methods is warranted. The work of

Chang and Brown 12 is particularly interesting, although

their moving boundary-moving mesh techniques would be very

difficult to implement where the thermodynamic phases are

fragmented.

For application to the space environment, other

forces not addressed here can become important. Siegel 55

provides a good overview on the effects of reduced gravity

on heat transfer. The incorporation of a surface free

energy model would be especially useful, particularly for

very low gravity conditions. Pearson 48, Labus 36, and
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Metre 40 provide interesting approaches to handling the

free surface problem, however, appllcation to the finite

element method remains fertile ground for research.

Finally, the incorporation of a turbulence model into

the analysis could significantly extend its application.
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APPENDIX A

COMPUTER PROGRAMMING APPROACH AND DOCUMENTATION

This appendix discusses the general programming

approach and implementation used in this research.

Included is a description of the program functions and

important global variables. This is followed by a

flowchart of the major functions.

The programming language APL was chosen for its

reduced programming development time, its inherent matrix

manipulation capabilities, and because it is easily

transported to various computer hardware systems. APL was

originally developed by Iverson 33 as & general

mathematical notation and later implemented as a computer

programming language. A detailed description of the

programming language APL is given by Gilman and Rose 26.

APL has several significant advantages over more

"conventional" languages such as FORTRAN, PASCAL, etc.

Because APL is a symbolic vector language the source code

is typically at least two to three times shorter than most

other languages and can be developed about four to ten

times faster. Table A.I shows a comparison between

FORTRAN and APL programs to produce the sum of all the

numbers greater than 50 in a set of real numbers. The APL

program is significantly shorter. Several characteristics

contribute to APL's brevity. APL processes aggregates of
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data, or arrays, with much the same syntax as single

numbers, and therefore essentially eliminates the need for

structures such as loops. Data is maintained unformatted

within the APL environment, so that no logical ties to the

host operating system files is required. In addition, all

numbers are stored and operations performed using double

precision.

Table A.I FORTRAN and APL Programs to Sum the Real
Numbers In a Set That are Greater Than 50

FORTRAN

DOUBLE PRECISION SUM, X

READ(5, i00) LIMIT

I00 FORMAT (II0)

SUM=0.0D0

200 DO 400 I=I,LIMIT

READ(5,300) X

300 FORMAT (FI0.5)

IF(X.LE.50.) GO TO 200

400 SUM=SUM+X

WRITE (6,500) SUM

500 FORMAT(F20.5)
STOP

END

APL

+/(x>5o)/x

Most APL systems today use an interpreter though some

compilers are available. The interpreted versions lend

themselves very well to program development because the

environment is interactive, no compiling is required, and

the debugging facilities work directly with the source
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code. Compiled versions however can run significantly

faster for some problems (particularly those that are

highly iterative). For the problem presented in this

research, however, the computer time usage is dominated by

inversion of the large system matrix. This inversion is

performed by a highly efficient APL primitive function and

would not benefit significantly from using a compiled

external function. This APL matrix inversion function

will also take advantage of super computer class vector

processing hardware, when available, to further improve

computational performance.

The following pages contain descriptions of the

program functions and important global variables. This is

followed by the calling structure (flow chart) of the

major functions.
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FUNCTIONS

ADJSTEP

ADJUSTS TIME STEP BASED ON ABILITY TO CONVERGE AND FIELD VALUES

AGAIN

INTERATIVE SOLUTION (FOR NON-LINEARITIES) AT EACH TIME STEP

AINTCON

INTEGRATION CONSTANTS FOR USE WITH AINTGRT

AREA

CALCULATES AREAS AND VOLUMES OF ELEMENTS

BDY

EVALUATES R VECTOR FROM BOUNDARY AND IHTERNAL CONDITIONS

8DY2

MODIFIES ELEMENT R MATRIX FOR BOUNDARY COND. TYPE 2 (PRESCRIBED FLUX)

BDY2aSU8

SUB-FUNCTION OF 8DY2 TO PRESCRIBE EACH (ELEMENT, SIDE COMBINATION)

CHKCNV

CHECKS CONVERGENCE OF EF, UF, VF AND PF WITH LAST ITERATION VALUES

CHKCNV_SI

CHECKS FIELD VALUES FOR CONVERGENCE

CHKEF

CHECKS ENERGY FIELD VALUES TO SEE IF WITHIN PROPERTY DATA RANGE

CHKINPRES

CHECK PRESRCRIBED PRESSURE NODE "'PRNODE'" SPECIFIED.IN INPUT

CHKINPUT

CHECK INPUT PARAMETERS

CHESS

CHECK IF STEADY STATE HAS BEEN REACHED

CHKTF

CHECKS TEMPERATURE FIELD VALUES IF WITHIN PRESCRIBED VALUES

CLEANUP

ERASES VARIABLES NAMED IN GL[ EXCEPT THOSE WITH ALT. CHARACTER NAMES

C00RXE

GENERATES XI-ETA COORDINATES OF THE NODES

CPUCHK

RETURNS A O IF CPU TIME LIMIT IS EXCEEDED

CPUTIME

RETURNS CPU SECONDS USED SINCE "'TSTART'" WAS ISSUED

DFN

CALCULATES DERIVATIVES OF FIELD VARIABLE AT THE ELEMENT NODES

DIAG

FORMS DIAGONAL MATRIX FROM A VECTOR X

EGYASN

ASSIGN ENERGY FIELD VALUES

EGYBAR

FORMS ENERGY E@UATIONS FOR SOLVING TRANSIENT RESPONSE

EGYEVL

EVALUATES ENERGY MATRICES

EG_MAT

CONSTRUCT THE ENERGY ELEMENT MATRICES

ENERGY

FORMS AND SOLVES THE TRANSIENT ENERGY EQUATION

FLDMAT_CM

FORMS CM MATRIX FOR FLDMAT
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FLDMAT6KA

FORMS XA MATRIX FOR FLDMAT

FLDMAT6KAE

FORMS XAE MATRIX FOR FLDMAT

FLDMAT_KNN

FORMS Kll K12 K21 K22 MATRICIES FOR FLDMAT

FLDM_TALCN

FORM LCI AND LC2 MATRICIES FOR FLDMAT

FLDMAT6LN

FORMS L1 AND L2 MATRICIES FOR FLDMAT

FLDMAT6MM

FORMS MASS MATRIX FOR FLDMAT

FLDMAT_R

FORM R VECTORS FOR FLDMAT

FLDMATnRC

FORMS RC VECTOR FOR FLDMAT

FLDMATdRP

FORMS AND ASSIGNS RP MATRICIES FOR FLDMAT

FLDSLV

SOLVES EQUATIONS AND ASSIGNS FIELD VALUES

FLDSLV_STAR

RETURNS FIELDS FROM LAST ITERATION

FLOW

FORM AND SOLVE THE FLUID FLOW EQUATIONS

FLWASN

ASSIGN FLUID FLOW FIELD VALUES

FLWBAR

FORMS FLOW EQUATIONS FOR SOLVING TRANSIENT RESPONSE

FLWEVL

EVALUATES FLUID FLOW ELEMENT MATRICES

FLWMAT

CONSTRUCT THE FLUID FLOW MATRICES

FMFEQ61

FORM ENERGY FIELD EQUATIONS

FMFEQ62

FORM FIELD EQUATIONS

FRONTEND

PERFORMS UPFRONT ONCE ONLY FUNCTIONS

GRAVVEC

RETURNS GRAVITATIONAL 80DY FORCE VECTOR

GRID6ELN

GENERATES QUADRATIC NODE NUM8ERS (ELEMENT BASIS) FOR GRIDGEN

GRID6LNODE

GENERATES LINEAR NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN

GRID_RSE

GENERATES REGION SIDE ELEMENT NUMBERS

GRID_RSLN

GENERATES REGION SIDE LINEAR NODE NUMBERS FOR GRIDGEN

GRID6RSN

GENERATES REGION SIDE QUADRATIC NODE NUMBERS FOR GRIDGEN

GRIDGEN

GENERATES ELEMENT NODE NUMBERING

INBDY

SPECIFY REGION BOUNDARY CONDITIONS
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INGEOR

SPECIFY GEOMETRY INPUT PARAMETERS

INITIAL

INITIALIZE VARIABLES

INITMP

INITIALIZE MATERIAL PROPERTIES: CASE WHERE PRESSURE NODE PRESCRIBED

INITMPROP

INITIALIZE MATERIAL PROPERTIES USING AVERAGE CONDITIONS

INITPRES

INITIALIZE PRESSURE FIELD

INITTEMP

INITIALIZE TEMPERATURE

INITVEL

INITIALIZE FLUID VELOCITIES

INPLYGN

FINDS IF POINTS XY ARE IN POLYGONS @

INPROC

SPECIFY PROGRAM OPERATION INPUT PARAMETERS

INPUT

SPECIFY AND PRINT OUT INPUT PARAMETERS

INREC

SPECIFY INITIAL R AND Z COORDINATES OF REGION

INTQR

INTERPOLATES BY FINDING CLOSEST REGION AND USING DBL. QUAD. REGRESS.

INTQRLREG

CALLED BY INTQR, IT PERFORMS DOUBLE QUADRATfC REGRESSION BY REGION

INT@RLUNN

UNNORMALIZE A MATRIX "A'" (NESTED ARRAY) WRT. RANGE

JACCHK

CHECK IF DETERMINANT OF JACOBIAN HAS A SIGN REVERSAL

LSHAPE

CALCULATES LINEAR SHAPE FUNCTIONS AND THEIR DERIVATIVES

LUMP

LUMPS THE CAPACITANCE MATRIX BY ROWWISE SUMMATION

LX

LATENT EXPRESSION FOR PHASTRAN

MAP

MAP XI-ETA COORDINATES OF NODES INTO X-Y SYSTEM

PHASTRAN

MAIN CONTROL FUNCTION FOR PHASE CHANGE ANALYSIS MODEL

PRSCRB

PRESCRIBES FINITE ELEMENT E_UATIONS IN THE GLOBAL VARS. KBAR AND RBAR

PRSIDE

MODIFIES PFEQ WHICH DEFINES PRESCRIBED BOUNDAR_ CONDTIONS

PRSIDE_ADJ

ADJUSTS ORIGINAL NODE POSITIONS IN A MATRIX FOR FIELD TYPE

PRSIDEdFLD

PRESCRIBES BOUNDARY CONDITIONS FOR A FIELD

PRSIDELTEMP

CONVERTS TEMPERATURE 80UNDARY CONDITIONS TO ENERGY BC'S

PRSPRES

PRESCRIBES PRESSURE NODEM

PRSP1

PRESCRIBES PRESSURE NODEM: CASE WHERE TOTAL MASS CONSTRAINED
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PRSP2

PRESCRIBES PRESSURE NODEM: CASE OF OPEN SYSTEM

PRSVLC

RETURNS LOCATIONS OF PRESCRIBED VALUES FOR THESE FIELD TYPES

QLGSHP

CALCS. QUADRATIC LAGRANGIAN SHAPE FUNCTIONS AND DERIVATIVES

QUADRGXZ

PERFORMS QUADRATIC REGRESSION ANALYSIS IN 3 DIMENSIONS X 7 Z

RCOND

RETURNS SUB-VECTOR FOR INTERNAL CONDUCTION

RDUPL

RETURNS A BOOLEAN FOR REDUCING DUPLICATE VALUES LEAVING ONLY THE 1ST

REDUCE

REDUCES (8Y SUMMATION) A VECTOR WITH MULTIPLE INDICIES

REMDUPEL

REMOVES DUPLICATE ELEMENTS OF X

RESULTS

DfSPLAYS FIELD VARIABLES

RHOZERO

CALCULATES THE REFERENCE DENSITY

RPRES

FORMS PRESSURE RESULTANT VECTOR

SAVEFIELDS

SAVES FIELDS AT EVERY DFN TIME STEP, PUTS IN NESTED ARRAY _Z_E&_

SETLAST

SETS VARIABLES FROM LAST TIME ITERATION

SETSOLID

SETS VELOCITIES TO ZERO FOR NODES IN SOLID STATE

SETSTAR

SETS EF, UF, VF AND PF AT LAST CONVERGENCE ITERATION

SIFAC

CALCULATES THE SIDE INTEGRATION FACTOR FOR USE WITH SINTGRT

SINTCON

INTEGRATION CONSTANTS FOR USE WITH SINTGRT

STATPRES

CALCULATES THE STATIC PRESSURE DISTRIBUTION

STRIPE

CREATES STRIPE LINE BORDER

TIMECHK

RETURNS A 0 IF TIME LIMIT IS EXCEEDED

TIMESTEP

TIME STEPPING FUNCTION

UPPROP

UPDATES PROPERTIES ON GLOBAL NODE BASIS

UPPROPATEMP

PLACES PRESCRI8ED TEMPERATURES IN UPDATED PROPERTIES
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VARIABLES

ANI

ORDER OR GAUSS-LEGENDRE QUADRATURE FOR AREA INTEGRATION
AXEI

XI AND ETA COORD. USED IN AREA NUM. INTEGRATION
BC

MODIFIED BOUNDARY CONDITIONS OF REGIONS

CEQ

CIL

CAPACITANCE MATRIX FOR FLOW EQUATIONS

CONSTANTS FOR FUNCTION INTGRT

CONVERGENCE ITERATION LIMIT
CMAT

HEAT CAPACITANCE MATRIX
CPULIM

LIMIT FOR CPU TIME

CONSTANTS FOR LINEAR SHAPE FUNCTIONS

CONSTANTS FOR QUADRATIC LAGHANGIAN SHAPE FUNCTIONS
DXT

DER. SHAPE FNCS. WRT X FOR ELMNT. TYPE (NESTED ARRAY)
DYT

EC

EF

DER. SHAPE FNCS. WRT Y FOR ELWNT. TYPE (NESTED ARRAY)

ENERGY CALCULATION CONTROL (O-NO THERMAL CALCS.)

INTERNAL ENERGY
EFINIT

INITIAL INTERNAL ENERGY
EFSTAR

INTERNAL ENERGY OF LAST CONVERGENCE ITERATION
ELN

NODE NUMBERS FOR EACH QUADRATIC ELEMENT
EREQ

RESULTANT VECTOR FOR ENERGY EQUATIONS
ERR

ALLOWABLE FIELD CONVERGENCE ERROR
FEET

FIELD ELEMENT TYPES (1-LINEAR, 2-QUAD)
FT

FIELD TYPE (I-INTERNAL ENERGY, ETC)
FC

FLUID CALCULATION CONTROL (O-NO FLOW, I-FLOW CALCULATED)
FREQ

RESULTANT VECTOR FOR FLOW EQUATIONS
GF

GEOMETRIC FACTOR FOR X-Y OR R-Z COORDINATE SYSTEMS
GRZ

GRAVITATIONAL CONSTANTS IN X AND Y DIRECTIONS
ICTL

ITERATION CONTROL (O-SUCCESSIVE SUB. I-NEWTON-RAPHSON)
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EBAR
MODIFIED STIFFNESS MATRIX FOR TRANSIENT FLOW E@UATIONS

KEQ
STIFFNESS MATRIX FOR FLOW EQUATIONS

KT
THERMAL CONDUCTIVITY

LNODE
NODE NUMBERS FOR EACH LINEAR ELEMENT

LSS
SHAPE FUNCTIONS FOR SIDE INTEGRATION

ND

NE

NST

PF

NUMBER OF DIVISIONS PER SIDE PER REGION

NUMBER OF ELEMENTS PER REGION

SHAPE FUNCTIONS FOR ELEMENT TYPES (NESTED ARRAY)

INTERPOLATED PRESSURE FIELD OF FLUID
PFEQ

MATRIX POS. AND PRSCRB. VALUES OF FLUID
PFINIT

INITIAL PRESSURE FIELD
PFSTAR

PRESSURE OF LAST CONVERGENCE ITERATION
EPHI

ENERGY FIELD VARIABLE SOLUTION
FPHI

FLOW FIELD VARIABLE SOLUTION
PRNODE

PRESCRIBED PRESSURE NODE INFORMATION

QAIF
QUAD. AREA INTEGRATION FACTOR

QSIF
SIDE INTEGRATION FACTOR

QSS
SHAPE FUNCTIONS FOR SIDE INTEGRATION

RBAR
MODIFIED RESULTANT VECTOR FOR TRANSIENT FLOW EQUATIONS

REQ
RESULTANT VECTOR FOR FLOW EQUATIONS

RRO
DENSIT_ OF MATERIAL

RELAST

LAST TIME ITERATION RESULTANT VECTOR FOR ENERG_
RFLAST

LAST TIME ITERATION RESULTANT VECTOR FOR FLOW
RN

REGION NUMBER
RSELMT

REGION SIDE ELEMENTS
RSLN

REGION SIDE LINEAR NODES
RSN

REGION SIDE NODES
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RZC

X AND Y COORDINATES OF CONTAINER

RZE

X AND _ COORDINATES OF ELEMENTS

RZN

X AND Z COORDINATES OF NODES

RZR

X AND Z COORDINATES OF NODES OF REGIONS

SAREA

SIDE AREAS OF RING ELEMENTS

SSC

STEADY STATE CONTROL (I-EXIT EARLY IF REACH STEADY STATE)

SF

SFN

SNI

STATE (OF THE MATERIAL) FIELD

SAVE FIELDS EVERY SFN TIME STEPS

ORDER OR GAUSS-LEGENDRE QUADRATURE FOR SIDE INTEGRATION

STATMSC

STATUS MESSAGES

SXEI

XI AND ETA COORD. USED IN SIDE NUM. INTEGRATION

TCTL

TIME START, END AND INCREMENT CONTROL

TF

TEMPERATURE FIEtD

THETA

TRANSIENT ALGORITHM CONTROL PAR,_METER

TIME

RECORD OF TIMES FOR EACH TIME STEP

TIMELIM

TIME LIMIT ON RUN

TINIT

INITIAL TEMPERATURE

TSC

TIME STEP CONTROL (O-CONSTANT, 1-VARIABLE)

UF

U VELOCITY FIELD

UFINIT

INITIAL U VELOCITY FIELD

UFSTAR

U VELOCITY FIELD OF LAST CONVERGENCE ITERATION

VF

V VELOCITY FIELD

VFINIT

INITIAL V VELOCITY FIELD

VFSTAR

V VELOCITY FIELD OF LAST CONVERGENCE ITERATION

VIS

FLUID VISCOSITY

VOL

VOLUME OF THE RING ELEMENTS

XEN

XI AND ETA COORD. OF NODES WRT REGION COORDINATES
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ELOWCRART OF WORKSPACE

LX

:CLS

:STRIPE

PHASTRAN

:FRONTEND

:CLEANUP

:INPUT

:INGEOM

:INREC

:INBDY

:INPROG

:GRIDGEN

:CRID_RSN

:GRIDaRSE

:GRIDaRSLN

:GRID_ELN

:GRID_LNODE

:COORXE

:MAP

:INITIAL

:CHKINPUT

:CHKINPRES

:AINTCON

:LSHAPE

:QLGSRP

:JACCHE

:SINTCON

:QLCSHP

:LSHAPE

:SIFAC

:AREA

:INITTEMP

:INITVEL

:INITPRES

:INITMP

:INTQR

:INPLYGN

:INTQR_REG

:REMDUPEL

:QUADRGXY

:INTQR_UNN

:UPPROP

:INTQR

:INPLZGN

:INTQRaREG

:REMDUPEL

:@UADRGXY

:INTQR6UNN

:UPPROP6TEMP

:STATPRES

:INITMPROP

:RPRES
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:DFN
:QLGSHP

:DFN
:QLGSHP

:RCOND
:GRAVVEC

:RHOZERO
:INTQR

:INPLXGN
:INTQR_REG

:REMDUPEL
:QUADRGXZ

:INTQRaUNN
:SETLAST
:SETSTAR

:TIMESTEP
:CPUCHK

:CPU2IME
:TIMECHK
:AGAIN

:SETSTAR
:ENERGY

:EGYEVL
:EGYMAT

:FLDMAT6CM
:ELOMATARC

:BDY
:BDY2

:8DI2ASUB
:RCOND

:FLDMAT_KAE
:ELDMAT6RP

:RPRES
:DEN

:DEN
:QLGSHP

:QLGSRP

:PMFEQal

:EGYBAR

:LUMP

:DIAG

:PRSIDE

:PRSIDE6FLD

:PRSIDEaTEMP

:INTQR

:INPLYGN

:INTQRAREG

:REMDUPKL

:QUADRGX_

:INTQR_UNN
:PRSIDEAADJ

:RDUP6

:PRSCRB

:RDUPL

:PRSVLC
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:FLDSLV
:FLDSLVASTAR

:EGTASN
:FLOW

:FLWEVL
:FLWMAT

:FLDMA TdMM
:FLDMA TAKA
:FLD_M TSKNN
:FLDMAT_LN
:FLDMAT_LCN

:FLDMA TdR
:GRA VVEC

:RHOZERO

:IttTGR

:BDX

:BD_

:INPLYGN
:INTQRAREG

:REMDUPEL
:QUADRGXX

:INTQR_UNN

:FMFEQ_2
:FLWBAR

:LUMP

:DIAG
:PRSIDE

:PRSIDE_FLD
:PRSIDESTE_P

:INTQR
:INPL_GN
:INTQR_REG

:REMDUPEL
:QUADRGXX

:INTQR_UNN
:PRSIDE_ADJ

:RDUPL
:PRSPRES

:PRSP1
:PRSP2

:PRSCRB
:RDUPL

:PRSVLC
:FLDSLV

:FLDSLVASTAR
:FLWASN

:UPPROP
:IHTQR

:IHPLYGN
:INTQRARKG

:REMDUPEL

:8DY2
:8DX_ASUB

:8DX2
:8DX2_SUB
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:QUAORGXZ

:INTQR6UNN

:UPPROP_TEMP

:CHKCNV

:CHKCNVAS1

:CHKCNVASI

:CHKCNV6SI

:CNKCNV6S1

:SETSOLID

:SETSOLID

:ADJSTEP

:CRKEF

:CHKTF

:INITIAL

:CHKINPUT

:CHKINPRES

:AINTCON

:LSHAPE

:QLGSHP

:JACCHK

:SINTCON

:QLGSHP

:LSHAPE

:SIFAC

:AREA

:INITTEMP

:INITVEL

:INITPRES

:INITMP

:INTQR

:INPLYGN

:INTQRaREG

:REMDUPEL

:QUADRGX_

:INTQR6UNN

:UPPROP

:STATPRES

:INITMPROP

:RPRES

:DFN

:DFN

:RCOND

:GRAVVEC

:INTQR

:INPLYGN

:INTQRaREG

:REMDUPEL

:QUADRGX_

:INTQRaUNN

:UPPROPaTEMP

:QLGSNP

:QLGSHP

:RHOZERO

:INTQR

:INPLYGN
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:INTQRLREG .
:RERDUPEL
:QUADRGX_

:SETLAST
:SETSTAR

:SETLAST
:SAVEEIELDS
:CHKSS

:RESULTS

:INTQRaUNN
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APPENDIX B

COMPUTER PROGRAM LISTING AND RESULTS

This appendix contains the APLsource program listing

used in this research. The input data for Case 4

described in Chapter 5 is contained in the functions and

global variables listed in this appendix. To run the

program after loading the APL workspace enter the

following:

PHASTRAN #

where # is the the number of divisions of a side of the

solution domain. A value of seven results in 49 equal

elements for this case. The results of such a run are

given in the global variable RESULTS at the end of this

appendix.
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SYSTEM VARIABLE SETTINGS
QCT: 1E-13
OFC: ..*O_-
ORT:
OIO: 1
OLC:
OLX:
[3PP: 5
[IPR:

DPW: 7g
ORL: 16807
OTZ: 0
DWA: 31226812
_NLT:

ADDROWS
[0] T÷TAHLE ADDROWS ROW;L
[13 . ADDS ROW(S) TO A TABLE FILLING WITH BLANKS OR O'S
[2] .
[3] TABLE÷TOMATRIX TABLE n MAKE SURE TABLE IS A MATRIX
[_] ROW÷TOMATRIX ROW n CONVERT ROW TO A MATRIX

[5] L÷(-I+pTAHLE)[-I_pROW . FIND LARGEST OF COLUMNS
[6] TABLE÷((I_oTABLE).L)÷TABLE . RESHAPE TABLE
[7] T÷TAHLE.[1]((I_oROW).L)_ROW n ADD ROW(S)

ADJSTEP
CIC ADJSTEP NIT;MEG

n ADJUSTS TIME STEP BASED ON ABILITX TO CONVERGE AND FIELD VALUES
[0]
[1]
[2] ,
[3] ÷(2SC:O)/O ,

[_] ÷(NIT>CIL)/_EC ,
[5] ÷(~CHKEF)/DEC .
[6] ÷(~CHKTF)/_EC ,
[7] ÷0 .

[8] _EC:TIME÷TCTL[1] ,
[9] INITIAL ,

[10] NTS÷I .
[11] CIC÷IOpO a
[12] TCTL[3]÷TCTL[3]e2 n
[13] _ND:MSG+'TIME STEP CHANGED TO' .
[1_] STATUS MSG TCTL[3] .
[15] ÷0 .

[16] _TOP:STATUS 'NOT CONVERGED' .
[17] ÷ .

EXIT IF TIME STEP CAN'T CHANGE
CHECK FOR TOO MANY ITERATIONS

IF ENERGY OUT OF RANGE. DECREASE
IF TEMP. OUT OF RANGE. DECREASE
EXIT. TIME STEP IS OK
SET BACK TIME TO BEGINNING
REINITIALIZE PROBLEM
DECREASE TIME STEP COUNTER
REINITIALIZE ITEM. COUNTER
DIVIDE TIME STEP B_ 2
MESSAGE TO USER

DISPLAY AND RECORD MESSAGE
EXIT
MESSAGE TO USER
END EXECUTION
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AGAIN

[0]

[1]

[2]

[3]

[5]

[63

[7]

[e]

[g]

[zo]

[11]

NIT+AGAIN ITER

, INTERATIVE SOLUTION (FOR NON-LINEARITIES) AT EACH TIME STEP

NIT+ITER+ITER+I ,

+(ITER.CIL)/O ,

SETSTAR ,

ENERGy

FLOW

UPPROP ,

+(CHKCNV NIT)/O ,

SETSOLID A

NIT+AGAIN ITER n

ITERATION COUNTERS

CHECK IF TO0 MANY ITERATIONS

SET LAST CONVERGENCE ITERATION VARIABLES

FORM AND SOLVE ENERGY EQUATION

FORM AND SOLVE TRE FLUID EQUATIONS

UPDATE PROPERTIES BASED ON PF AND EF

CHECK CONVERGENCE OF TF. UF. VF AND PF

SET VELOCITIES OF SOLID NODES TO ZERO

RECURSIVE CALL

AINTCON

[0]

[I]

[2]

[3]

[_]

[5]

[6]

[7]

[8]

[g]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[ZS]

[ig]

[20]

[2Z]

[22]

[23]

[2_]

AINTCON N;BI;B2_D;NI;ETA;QJAC;NSHP;LAS:QAS

INTEGRATION CONSTANTS FOR USE WITH AINTGRT

NI+I+ANI+N

ETA_(NZ.NI)pNI$(Q![I;;])[ANI|]

AXEI÷(2.(NIxNI))O(._ETA).(.ETA) ,

LAS÷LSHAPE AXEI .

QAS+QLGSHP AXEI A

QJAC÷RZE JACOB QAS ,

QAIF+MDET QJAC

JACCHK QAIF

81÷RZE[|_I 3 5 7]BF LAS ,

B2+RZE BF QAS ,

NSHP÷_ 2 1 3_(1.NE.oNSHP)pNSHP÷LAS[1;;],

NST÷cNSBP

NSHP+W 2 I 3_(I.NE.pNSHP)pNSHP÷QAS[1;;],

NST÷NST.cNSHP .

D+_ I 2 3_(I,pD)pD+BI[;;I;] .

DXT+cD

D÷4 I 2 3_(1.pD)pD÷BI[;;2:]

DZT+cD A

D÷_ 1 2 3_(1.pD)pD+B2[;;1;]

DXT÷DXT.cD ,

D+_ I 2 3_(1.pD)pD+82[;;2;] .

DYT+DYT.cD ,

ORDER OF GAUSS-LEGENDRE

ETA COORDS.

XI AND ETA COORDS.

LINEAR SHAPE FUNCTION

QUAD. LAGRANGIAN SHAPE FNS.

JAC08IAN FOR QUAD. ELEMENTS

Q_AD. AREA INTEGRATE FACTOR

CHECK JACOBIAN

LINEAR GRADIANT MATRIX

QUAD. GRADIANT MATRIX

SHAPE FNS. ELMNT. TYPE 1

PUT IN GLOBAL VARIABLE

SHAPE FNS. ELMNT. TYPE 2

ADD TO GLOBAL VARIABLE

DERIV. WRT. X ELMNT. TYPE I

PUT IN GLOBAL VARIABLE

DERIV. WRT. Y ELMNT. TYPE 1

ADD TO GLOBAL VARIABLE

DERIV. WRT. X ELMNT. TYPE 2

ADD 20 GLOBAL VARIABLE

DERIV. WRT. Y ELMNT. TYPE 2

ADD TO GLOBAL VARIABLE



128

AINTCRT
I÷AINTGRT A;WE;WEX;N1

. INTEGRATES FUNCTION OVER AREA OF ELEMENT IN XI-ETA COOR. SYSTEM

[0]

[1]
[2] .
[3] NI÷ANI+I .

[.] ÷(lep,A)/_CALAR .
[5] ÷(^/(pQAIF):2+OA)/_XT R
[63 STATUS EEE_GEz] ,
[7] ÷0 .

[8] _XT:A÷Ax(20tppA)W(2_pA)pQAIF .
[9] ÷QALC .
[10] _CALAR:A+AxQAIF
[113 QALC:WE÷(N1.N1)pNI+(_[2;:])[ANI;] ,
[12] WEX÷(oA)p_((x/(I+pA)).(I*pA))p(.WE)x°_WE ,
[13] I÷+/[I]WEXxA ,

1+ORDER OF INTEGRATION
CHECK IF A IS SCALAR

CHECK IF pA IS LIKE pQAIF
MESSAGE TO USER
EXIT
MULT. 87 INTORT. FACTOR
JUMP TO FINISH INTEGRATION

MULT. 8Z INTGRT. FACTOR
WEIGHTING FACTORS
RESHAPE WEIGHT FACTORS
NUMERICAL INTEGRATION

AREA
tO]
El]
[23
[3]
[_3

AREA;RN
n CALCULATES AREAS AND VOLUMES OF ELEMENTS

SAREA+GFxSINTGRT 1 , SIDE AREAS OF ELEMENTS
VOL÷AINTGRT 1 n VOLUME OF ELEMENTS

BDY
t0]
[I]

[2]
[3]

[5]
[6]
[73
[8]
IS]
[103
[11]
[12]
[133

[1_]
[15]
[16]
[17]
[18]
[19]

[2o]
[21]
[22]
[23]
[2_]

[25]
C26]
[27]

R÷HDY FT;B;M;NC;N;D;S
. EVALUATES R VECTOR FROM BOUNDARY AND INTERNAL CONDITIONS

8÷FT FSTCM 8C ,
NC*8[;I]

R+(_.(SNI+I).NE)pO ,
R

&00P:÷(O=pNC)/NXT1 A
N÷I+NC m
NC+(NzNC)/NC
+(N=l)/&00P .
B÷N FSTCM 8 .

D+RN FSTCM 8 .

÷(O:xlpD)/_XT1 .
÷(N:2)/_2 .

M÷'BOUNDARY CONDITION NOT DEFINED (BDY)'.
STATUS M .

÷&OOP .
_2:R÷D 8DY2 R .
+&OOP .

R

NXTI:÷(1 2=FELT[FT])/&INEAR._UAD n
STOP R

_UAD:S÷GSS[1;;] .
+NXT2 .

_INEAR:S÷LSS[1;|] .
NXT2:R+. 2 3 I_((-I÷pS),pR)pR n

R÷3 1 2 _W((pR)DS)xR .

BC'S FOR THIS FIELD TYPE
LIST OF BC TYPES
INITIALIZE R VECTOR TO ZERO

LOOP ON BOUNDARY CONDITIONS
TAKE FIRST 8C TYPE
REMOVE THIS TYPE FROM LIST
IGNORE PRESCRIBED 8C'S
BC'S FOR THIS BC TYPE
BC'S FOR THIS REGION NUMBER
EXIT IF NO SUCH BC'S

80UNDARY CONDITION TYPE 2
WARNING TO USER
DISPLAY AND RECORD MESSAGE
CONTINUE LOOPING
PRESCRIHED FLUX 8C
END OF LOOP

CHECK IF LINEAR ELEMENTS
WRONG ELEMENT TYPE

QUADRATIC SHAPE FUNCTIONS
FINISH CALC. OF R VECTOR

LINEAR SHAPE FUNCTIONS
RESHAPE R
AND MULTIPL_ BY SHAPE FNS.
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8DY2
[0]
[1]
[2]
[3]
[.]
[5]
[6]
[7]
[8]
[g]

G÷D 8D_2 R;DI

, MODIFIES ELEMENT R MATRIX FOR BOUNDARY COND. TYPE 2 (PRESCRIBED FLUX)
A D[;1] IS THE SIDE NUMBERS

, D[|2] IS THE PRESCRIBED FLUX VALUES
A

÷(O:I÷DD)/0 . EXIT IF NO 80UNDAR_ CONDITIONS
G+R . INITIALIZE RETURN VARIABLE
DI+c[2]D . NESTED ARRAY OF BOUNDARY COND.
8DY26SUB"D1 . HANDLE EACH BOUNDARY CONDITION
G÷R n RETURN R VECTOR FROM 8D_SU8

8DY2_SU8

[0] 8DYT_SU8 DI=EL:S|PV
[1] n SUB-FUNCTION OF BDY2 TO PRESCRIBE EACH (ELEMENT. SIDE COMBINATION)
[2] . D1 IS A NESTED ARRAY OF PRESCRIBED SIDE BOUNDARY CONDITIONS
[3] A R IS THE R MATRIX FROM 8DY2 WHICH IS MODIFIED BY THIS FUNCTION

[5] S÷DI[I] n SIDE AFFECTED
[6] EL÷RSELMT[S:] . ELEMENTS AFFECTED

[7] PV÷((pR)[2].pEL)_"o"'DI[2] _ PRSCRBD. VALUES AT INTG. PTS.
[8] R[S;;EL]÷PV _ MODIFY THE R MATRIX

EL

BF

[0] 8÷RZ 8F SICIRS
[1] , CALCULATES THE FIELD VARIABLE GRADIANT INTERPOLATION MATRICIES
[23 RS÷I*pS[2:_]

[3] 8÷2 I 3 _(NE.pC)pC÷S[2;|].[I.5]S[3;;]
[_] B÷(INV RZ JACOB S)INPROD B

CHKCNV
[0]
[I]
[2]
[33

[5]

[6]
[7]
[8]
[9]
[10]
[113
[12]

[13]

CNV÷CHKCNV NIT
" CHECKS CONVERGENCE OF EF. U_.
. CNV RETURNS 1 IF ALL CONVERGED
4

CNV÷ERR CBKCNV_SI 'EF' ,

+(FC=O)I_ND .
CNV÷CNV^ERR CRKCNV_SI 'UF' .
CNV÷CNV^ERR CRKCNV6SI 'VF' .
CNV÷CNV^ERR CHKCNVaSI 'PF' A

END:+(CNV:O)/&IMIT ,
STATUS 'CONVERGED WITB' NIT 'ITERATIONS' ,
÷0 A

&IMIT:_(NIT<CIL)/O ,

STATUS 'NOT CONVERGED IN' NIT 'ITERATIONS'.
A

VF AND PF WITB LAST ITERATION VALUES
0 IF NOT ALL CONVERGED

CHECK EF
JUMP IF NO FLOW CALCS.
CHECK UF

CHECK VF
CHECK PF
CHECK FOR CONVERGENCE
MESSAGE TO USER
EXIT
EXIT FOR MORE ITERATIONS

MESSAGE TO USER
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CHKCNV&S1

[o]
[I]
[2]
[3]
[_]
[5]
[6]
[7]
[8]
[g]
[zo]
[11]
[12]
[13]

[15]
[16]

[17]

[18]
[%g]
[20]
[2Z]

CNV÷ERR CBKCNVAS1 FLDNM_AFC;FLD;FLDSTAR;_S

CHECKS FIELD VALUES FOR CONVERGENCE
R

CNV÷O ,

FLD÷,FLDNM ,

FLDSTAR÷mFLDNM.'STAR' ,

LS÷(IFLD)<ERRxF/IFLD .

LS÷LSv(IFLD)<IE-IO .

LS÷LSv(IFLDSTAR)<ERRxF/IFLDSTAR ,

LS÷LSvO:FLDSTAR n

+(^ILS)ICANT .

FLD÷(LS÷~LS)/FLD n

FLDSTAR÷LS/FLDSTAR .

AFC÷I(FLD-FLDSTAR)_FLDSTAR n

CNV÷x/ERR>AFC n

+(CNV)/O .

+(ITER<CIL)/O

STATUS 'MAX ERROR '.FLDNM.': '.51F/AFC_
÷0 n

CANT: .

STATUS 'UNKNOWN CONVERGENGE OF' FLDNM,

CNV÷ITERzl A

DEFAULT IS NOT CONVERGED

FIELD VALUES

FIELD VALUES OF LAST ITERATION

LOCATIONS WITH SMALL VALUES

OR SMALL ABSOLUTE VALUES

OR RELATIVE SMALL STAR VALUES

OR ZERO FLDSTAR VALUES

CHECK IF NO VALUES WILL LEFT

IGNORE SMALL FIELD VALUES

AND THOSE SMALL STAR VALUES

ABSOLUTE FRACTIONAL CHANGE

RETURN A 1 IF ALL CONVERGED

EXIT IF ALL CONVERGED

EXIT IF NOT AT ITERATION LIMIT

DISPLAY MAXIMUM ERROR

EXIT

CAN'T DETERMINE CONVERGENCE

WARN USER

OK IF NOT FIRST ITERATION

CHKEF

[0] REC÷CHKEF:RGD;RGE

[1] n CHECKS ENERGY FIELD VALUES 20 SEE IF WITHIN PROPERTY DATA RANGE

[23 .

[3] RGD÷MINMAX,_BQEDATA[2;;] A RANGE OF DATA VALUES

[_] RGE÷MINMAX EF _ RANGE OF ENERGY FIELD VALUES

[5] REC÷A/RGE<._RGD _ CHECK IF WITHIN RANGE

CHKINPRES

[o]
[1]
[2]
[3]
[w]
[5]
[6]
[7]
[8]
[9]
[zo]
[il]

CHKINPRES;A

, CHECK PRESRCRIBED PRESSURE NODE "'PRNODE" SPECIFIED IN INPUT

A

÷(2=_C 'PRNODE')/O n CHECK IF CONFLICT WITH MATL. PROP.

A÷MINMAX,(PROPDATA_SEL,6)[I:|] n MIN. AND MAX. PRESSURE

+(A[2]<PRNODE[2])/_RRI . CHECK IF TO0 HIGH

÷(A[I]>PRNODE[2])/ERR2 " CHECK IF TOO LOW

+0

ERRI:'CBECK INPUT: TOO HIGH PRESSURE SPECIFIED FOR PROPERTY DATA'

STOP

ERR2:'CHECK INPUT: T00 LOW PRESSURE SPECIFIED FOR PROPERT7 DATA'

STOP
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CHKINPUT
[0] CHKINPUT|A;M
[I] n CHECK INPUT PARAMETERS

[2] ,
[3] CHKINPRES n CHECK PRESSURE SPECIFICATIONS
[_] ÷(~(5<A)vO.2>A+$_([/RZR)-L/RZR)/O n CHECK ELEMENT ASPECT RATIOS
[5] 'WARNING: ASPECT RATIO OF ELEMENTS GREATER THAN 5'

CHKSS

[0] OK÷CHKSS CIC
[I] n CHECK IF STEADY STATE HAS BEEN REACHED
[2] ,
[3] OK÷O n
[_] ÷(SSC:O)/O A
[5] OK÷^/I:CIC n
[6] ÷(~OK)/0
[7] STATUS 'STEADY STATE SOLUTION REACHED'

INITIALIZE RETURN VARIABLE
STEADY STATE CONTROL PARAM.

CHECK LAST ITERATION COUNTS
EXIT IF ITERATIONS > 1

MESSAGE TO USER

CHKTF
[0]
[13
[2]
[3]

[53
[63

[7]
[8]

[g]
[1o]
[11]
[12]
[13]

RTC_CHKTF:RCB;RGT;TMP;TOL
n CHECKS TEMPERATURE FIELD VALUES IF WITHIN
A
TOL+.I A
RTC+I n
TMP÷I FSTCM BC
TMP_I FSTCM TMP n

TMP+RN FSTCM TMP A
TMP+O I_TMP

÷(2>I_pTMP)/O
RGB+MINMAXt"$"TMP[;I] A
RGB+(MEAN RC8)+-I lx(l+TOL)xO.5x-/@RG8 A
RGT÷MINMAX TF
RTC+^/RGT<._RG8 A

PRESCRIBED VALUES

TOLERANCE RANGE
ASSUME OK

ENERGY BOUNDARY CONDITIONS
ONLY PRESCRIBED BCS.

ONLY THIS REGION
ANY SIDE
EXIT IF NOT ENOUGH INFO.
PRSCR8. TEMP. 8CS.
ADD TOLERANCE TO RANGE
RANGE OF TEMPERATURE VALUES
CHECK IF WITHIN RANGE

CLEANUP
[0]
[I]
[2]
[3]
[u]

[5]
[6]
[7]
[8]
[9]
[10]

CLEANUP;NAMES:ALTALP;C

, ERASES VARIABLES NAMED IN QL[ EXCEPT THOSE WITH ALT.

÷(0:0NC 'Q&[')/0
NAMES÷((I+OQ&[),IO)÷_&[ n

NAMES÷(~v/v/NAMES..:ALTALP)MNAMES .
C÷OEX NAMES
÷(l:xlC)/O n

IVARIABLES NOT ERASED IN CLEANUP'
NARES[((_C)/(zpC)xC=O);] .

CHARACTER NAMES

EXIT IF QLV NOT AVAILABLE
GET VARIABLE NAMES FROM _&[
ALTERNATE ALPHABET

DO NOT ERASE ALT. CHAR. NAMES
ERASE THE REST
CHECK IF ALL WERE ERASED
MESSAGE TO USER
DISPLA_ THOSE NOT ERASED
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CLS
[0]

[1]
[2]
[3]

[_]
[5]
[6]
[7]
[8]
[9]

[10]
[11]

[123

CLS;RC;CTLS;DATS
, CLEARS 3270 SCREEN

RC÷120 OSVO 2 _p'CTLSDATS t
÷(v/2=RC)/flOSBARE
RC÷I 0 1 0 OSVC 'CTLS'

CTLS÷'PAGE +1'
RC+CTLS
÷(O^.=RC)/O
'RETURN CODE OF '.(IRC).' FROM AP 120 t

DATS
RC÷OSVR 2 _o'CTLSDATS'
÷0

NOSHARE:'OFFER TO AP 120 NOT ACCEPTED'

COLM
[0]
[1]
[2]
[3]

[5]

R÷I COLM X
RETURNS VALUES FOR "'I'"INDEX OF LAST DIMENSION OF "'X'"

R+(I:t-I_pX)/X _ SELECT DATA

_(l<pp.I)/O _ IF MULTIPLE COLUMNS. FINISHED
R+(-I+OR)pR n ELSE RESHAPE. ELIM. LAST DIMENSION

COORXE
[0] COORXE:A
[1] , GENERATES XI-ETA COORDINATES OF THE NODES
[2] ,

[3] A÷-I+(-I+_I+2xND)x2t2xND
[4] A+(2pDA)pA .
[5] A+A.EO.5]_¢A ,
[6] XEN÷(2.0.5xx/pA)pA ,

NORMALIZED NODES LOCATIONS
XI COORDINATES

ADD ETA COORDINATES
C00RDS. WRT REGION C00RDS.

CPUCRK
[0] CK÷CPUCHK
[1] _ RETURNS A 0 IF CPU TIME LIMIT IS EXCEEDED
[2] ,
[3] CK÷~CPUTIME_CPULIM , CHECK CPU TIME

[_] +(CK=I)/O , EXIT IF OK
[5] STATUS 'CPU LIMIT EXCEEDED' , MESSAGE TO USER

CPUTIME
[0] CPU÷CPUTIME

[1] , RETURNS CPU SECONDS USED SINCE "'TSTART'" WAS ISSUED

[2] CPU÷O.OOlx[]AI[2]-TI[2]
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DFN

[0] DF+DFN F;A_8;S
[1] n CALCULATES DERIVATIVES OF FIELD VARIABLE AT THE ELEMENT NODES

[2]
[3] A÷-I -I 0 -I I -1 1 0 1 1 0 I -1 1 -1 0 0 0 _ NODE XI-ETA COORDINATES
[_] S÷QLGSHP_9 2pA n SHAPE FUNCTIONS AT NODES

[5] 8÷RZE 8F S , GRAD. INTERP. MATRIX
[5] DF÷3 2 I_+/BxOPAX(2 _)(F[ELN]) n DERIVATIVES AT NODES

DIAG
CO]
[I]

[2]

A÷DIAG X
n FORMS DIAGONAL MATRIX FROM A VECTOR X
A÷O -l÷(-_pX)_((2ppX)pO),X

DIST
C0]
[1]
[2]
[3]
[43

R+A DIST 8
CALCULATES THE DISTANCE BETWEEN CARTESIAN POINTS A AND POINTS 8

n LAST DIMENSION OF A AND 8 IS 2 COLUMNS OF X AND Y'S

R÷(+/(H-A)*2)*0.5 _ SQUARE ROOT OF SUM OF DIFF, SQUARED

DX

[03 R÷DX T
C13 n RETURNS DERIVATIVES OF THE SHAPE FUNCTIONS WRT. X

[2] " T IS THE FIELD TYPE (E.G. I-ENERGY)
C3] A
[4] R+=DXT[FELT[T]] n SELECT FROM GLOBAL NESTED ARRAY

DY
[03 R÷DY T
[1] _ RETURNS DERIVATIVES OF THE SHAPE FUNCTIONS WRT. Y
[23 . T IS THE FIELD TYPE (E.G. 1-ENERGY)

C3] ,
C_] R÷=DYT[FELT[T]] n SELECT FROM GLOBAL NESTED ARRAY

EGYASN
[0] LPV EGYASN F
[1] _ ASSIGN ENERGY FIELD VALUES
[2] n
[3] F÷LPVkF n
[_] F[(PFEQ[1;])]+PFEQ[2_] n
C5] EF+FAN F .

EXPAND FOR PRESCRIBED VALUES
REINSERT PRESCRIBED VALUES
ENERG_ VALUES AT ALL NODES



134

EGZBAR

[0] EGYBAR;A;B;CDT

[1] , FORMS ENERGY EQUATIONS FOR SOLVING TRANSIENT RESPONSE

[2] .

[3] CEe+LUMP CEQ n USE LUMPED CAPACITANCE

[_] CDT÷CEQ_TCTL[3] n CAPACITANCE _ 6TIME STEP

[5] XBAR÷(THETAxKEQ)+CDT , NEW STIFFNESS MATRIX

[6] A÷(CDT+KEQxTHETA-1)+.xEPRI . INTERMEDIATE CALCULATION

[7] 8÷.(RELASTxl-THETA)+THETAxEREQ A INTERMEDIATE CALCULATION

[8] RBAR÷A+8 , NEW RESULTANT VECTOR

EGYEVL

GO] EGZEVL;KAE;CM:RC;RP

[I] . EVALUATES ENERGY MATRICES

[2]

[3] PFEQ÷3000 n

[_] EGYMAT ,

[5] FMFEQal n

INITIALIZE PRESCRIBE VALUES MATRIX

CONSTRUCT FLUID SUB-MATRICES

FORM FIELD EQUATIONS

EGYMAT

[0] EGYMAT

[I] n CONSTRUCT THE ENERGY ELEMENT MATRICES

[2] n

[3] FLDMAT6CM n FORM CM MATRIX

[_3 FLDMAT_RC n FORM RC VECTOR

[5] ÷(FC=O)/O n EXIT IF NO FLOW CALCS.

[63 FLDMAT_KAE _ FORM KAE MATRIX

[7] FLDMATaRP n FORM RP VECTOR

ENERGY

ENERGY;LPV;FT;RESULT

FORMS AND SOLVES THE TRANSIENT ENERGY EQUATION

[03

[13

[2] ,

[3] +(EC=O)/O ,

[_] FT÷I .

[5] EGYEVL A

[6] EGYBAR n

[7] PRSIDE FT ,

[8] PRSCR8 .

[9] LPV÷PRSVLC FT .

[10] RESULT÷FLDSLV LPV ,

[11] LPV EGYASN RESULT ,

EXIT IF NO THERMAL ENERGY CALCS.

FIELD TYPE IS ENERGY

FORM THE ENERGY EQUATIONS

MODIFY EQUATIONS FOR TRANSIENT FORM.

PRSCRIBE REGION SIDE 8C'S

MODIFY FLUID ELEMENT EQS.

LOCATIONS OF PRESCRIBED VALUES

SOLVE THE FLUID EQUATIONS

ASSIGN THE FIELD VALUES
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FAN
[0] R÷FAN F;MAX

[1] . RETURNS FIELD VARIABLE AT ALL NODES

[2] . F IS FIELD VARIABLE

[3] . R IS MAXIMUM OF NNG FOR ALL FIELD TYPES

[4] .

[5] R_F . INITIALIZE RETURN VARIABLE

[6] MAX÷f/NNGtpFELT . MAXIMUM NODES PER ELEMENT

[7] +(MAX=oF)/O s EXIT IF ALREADY SAME AS LARGEST ELEMENT

[8] R_LINFV F . CONVERT LINEAR TO QUADRATIC VALUES

FLDMATSCM

[0] FLDMATACM;A

[I] _ FORMS CM MATRIX FOR FLDMAT

[23 .

[3] A+I FVEB RHO

[_] A÷I 2 w 3_(NS 1)xOPAX(2 3)A

[5] A÷(NS I)INPROD A

[6] CM+NODEM AINTGRT A

FLDMAT6KA

[o] FLDMATAKA;A

[I] n FORMS KA MATRIX FOR FLDMAT

[2]

[3] A÷(NS 2)×OPAX(2 3)((2 FVEB RHO)x2 FVEB UF)

[_] KA÷NODEM AINTGRT A INPROD I 2 _ 3_DX 2

[5] A+(NS 2)xOPAX(2 3)((2 FVEB RHO)x2 FVEB VF)

[6] KA÷KA+NODEM AINTGRT A INPROD 1 2 _ 3_DY 2

FLDMAT_KAE

[03 FLDMAT_KAE;A

[13 . FORMS KAE MATRIX FOR FLDMAT

[23

[3] A+(NS 1)xOPAX(2 3)((1 FVEB RHO)xl FVEB UF)

[_] KAE÷NODEM AINTGRT A INPROD 1 2 _ 3_OX 1

[5] A÷(NS 1)xOPAX(2 3)((1 FVEB RHO)xl FVEB VF)

[6] KAE+KAE+NODEM AINTGRT A INPROD 1 2 _ 3_DX 1
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FLDMA26KNN

[0] FLDMATAKNN;A

[1] . FORMS KI1 K12 K21 K22 MATRICIES FOR FLDMAT

C2] .

[3] A+I 2 w 3_(DX 2)xOPAX(2 3)(2 FVEB VIS)

[4] Kll÷NODEM AINTGRT(DX 2)INPROD A

[5] K12÷NODEM AINTGRT(DZ 2)INPROD A

[6] A÷I 2 4 3_(DZ 2)xOPAX(2 3)(2 FVEB VIS)

[7] K21÷NODEM AINTGRT(DX 2)INPROD A

[8] K22+NODEM AINTGRT(DZ 2)INPROD A

FLDMATaLCN

[0] FLDMATALCN;A

[I] n FORM LCI AND LC2 MATRICIES FOR FLDMAT

[2] .

[3] A+(NS _)INPROD 1 2 _ 3_DX 2

[_] LCI+NODEM AINTGRT AxOPAX(2 4)(2 FVEB RHO)

[5] A÷(NS _)INPROD I 2 4 3_DY 3

[6] LCT+NODEM AINTGRT AxOPAX(2 _)(3 FVEB RHO)

FLDMAT6LN

[0] FLDMAT6LN

[13 A FORMS L1 AND L2 MATRICIES FOR FLDMAT

C2] .

[3] LI+-NODEM AINTGRT(DX 2)INPROD I 2 4 3_NS

[_] LT÷-NODEM AINTGRT(DY 3)INPROD I 2 _ 3_NS 4

FLDMAT6MM

[0] FLDMAT_MM:A

[1] n FORMS MASS MATRIX FOR FLDMAT

[23 n

[3] A+2 FVEB RHO .

[4] A÷(NS 2)INPROD 1 2 4 3_(NS 2)xOPAX(2 3)A n

[5] MM+NODEM AINTCRT A n

RHO AT QUAD. ELMNT NODES

INTER. CALC.

MASS (INERTIA) MATRIX

FLDMAT6R

[0] FLDMAT6R|GV

[1] n FORM R VECTORS FOR FLDMAT

[2] .

[3] GV+GRAVVEC

[4] RU÷GV[I|:]+NODEV SINTGRT BDZ 2

[5] RV÷GV[2:;]+NODEV SINTGRT BD_ 3
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FLDMATARC

[0] FLDMAT_RC
[1] n FORMS RC VECTOR FOR FLDMAT
[2] ,

[3] RC÷NODEV SINTCRT BDZ !
[_] RC+RC+RCOND

FLDMAT_RP
[0] FLDMATaRP
[1] , FORMS AND ASSIGNS RP MATRICIES FOR FLDMAT
[2] ,
[32 RP+RPRES

FLDSLV
[o]
[13
[2] ,

[3] _(ICTL:O Z)/_S.NR ,

[5] F÷.RBAR_XBAR ,
[63 ÷0 ,

[73 NR: .
[8] X÷LPV/FLDSLV_STAR
[g] F÷(KBAR+.xX)-RBAR
[103 F÷X+(-F)_KSAR n

F÷FLDSLV LPV;X

A SOLVES EQUATIONS AND ASSIGNS FIELD VALUES

CHECK TYPE OF ITERATION METHOD
SUCCESSIVE SUBSTITUTION
SOLVE SIMULTANEOUS EQUATIONS
EXIT

NEWTON:RAPRSQN
FIELDS FROM LAST ITERATION
NEW FORCING FUNCTION

SOLVE SIMULTANEOUS EQUATIONS

FLDSLV_STAR
[0] F÷FLDSLV_STAR

[1] _ RETURNS FIELDS FROM LAST ITERATION
[2]

[a] ÷(~FC:0)INZ .
[_] F÷EF n
[5] ÷0 .

[6] _I:EF.UF.VF.PF

CHECK IF FLOW CALCS. WERE SOLVED
FOR CASE OF NO FLOW CALCULATIONS
EXIT
FOR CASE WITH FLOW CALCULATIONS
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FLOW

[03

C1]

[2] ,

[3] ÷(FC=0)/0 ,

[_] FT÷2 3 _ ,

[53 FLWEVL .

[6] FLWBAR .

[73 PRSIDE FT .

[83 PRSPRES ,

[9] PRSCRB .

[103 LPV÷PRSVLC FT ,

[113 RESULT÷FLDSLV LPV n

[12] LPV FLWASN RESULT n

FLOW;LPV;FT;RESULT

n FORM AND SOLVE THE FLUID FLOW EQUATIONS

EXIT IF NO FLOW CALLS.

FIELD TYPES U. V. AND P

FORM THE FLUID EQUATIONS

MODIFY EQUATIONS FOR TRANSIENT FORM.

PRSCRIME REGION SIDE 8C'S

PRESCRIEE PRESSURE NODE

MODIF_ FLUID ELEMENT EQS.

LOCATIONS OF PRESCRIBED VALUES

SOLVE THE FLUID EQUATIONS

ASSIGN THE FIELD VALUES

FLWASN

[0] LPV FLWASN F

[1] _ ASSIGN FLUID FLOW FIELD VALUES

[2] n

[3] F÷LPV\F n

[_] F[(PFEQ[I;])]÷PFEQ[2;] A

[5] UF÷(A÷NNG 2)+F n

[6] F÷A÷F .

[7] VF÷(A÷NNG 3)_F A

[8] F÷A+F n

[9] PF÷(NNG _)+F

[10] (UF VF PF)÷FAN"UF VF PF

EXPAND FOR PRESCRIBED VALUES

REINSERT PRESCRIBED VALUES

EXTRACT U VELOCITY VALUES

DROP THOSE VALUES

EXTRACT y VELQCITY VALUES

DROP THOSE VALUES

EXTRACT PRESSURE VALUES

EXPAND TO ALL NODES

FLWBAR

[0] FLWBAR;A;B;CDT

[1] _ FORMS FLOW EQUATIONS FOR SOLVING TRANSIENT RESPONSE

[2] n

[3] LEG÷LUMP CEQ , USE LUMPED CAPACITANCE

[_3 CDT÷CEQ_TCTL[3] _ CAPACITANCE _ _TIME STEP

[5] KMAR÷(THETAxKEQ)+CDT , NEW STIFFNESS MATRIX

[63 A÷(CDT+KEQxTRETA-1)+.xFPHI n INTERMEDIATE CALCULATION

[7] B÷.(RFLASTxl-THETA)+THETA_FREQ n INTERMEDIATE CALCULATION

[8] RBAR÷A+B , NEW RESULTANT VECTOR

FLWEVL

[03 FLWEVL;MM;KA;KC;Kll;KI2;K21;K22;L1;L2;RC:RU;RV;LC1;LC2;RP

[I] , EVALUATES FLUID FLOW ELEMENT MATRICES

[2] n

[33 PFEQ÷30pO . INITIALIZE PRESCRIBE VALUES MATRIX

[43 FLWMAT , CONSTRUCT FLUID SUB-MATRICES

[5] FMFEQA2 n FORM FIELD EQUATIONS
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FLWMAT

[0] FLWMAT

[I] . CONSTRUCT THE FLUID FLOW MATRICES

[2]

[3] FLDMATAMM

[W] FLDMATAKA .

[5] FLDMAT_KNN .

[6] FLDMAT_LN .

[7] FLDMATALCN ,

[83 FLDMATAR ,

FORM MASS MATRIX

FORM KA MATRIX

FORM K11 K12 K21 K22 MATRICIES

FORM LI L2 MATRICIES

FORM LC1 LC2 MATRICIES

FORM RU RV VECTORS

FMFEQ61

[0] FMFEQA1

[1] . FORM ENERGY FIELD EQUATIONS

[2] .

[3] CEQ_CM

[_] EREQ+RC n

[53 ÷(FC:I)/FLOW A

[6] KEQ÷(pCEQ)pO .

[73 ÷0 a

[8] FLOW:KEQ÷KAE A

[g] EREQ+EREQ+RP A

CAPACITANCE MATRIX

ENERG_ RESULTANT VECTOR

CHECK FOR FLUID FLOW CALCS.

NO FLOW STIFFNESS MATRIX

EXIT

WITH FLOW STIFFNESS MATRIX

WITH FLOW RESULTANT MATRIX

FMFEQA2

[0] FMFEQ_2:ZI_ZT:Z3

[13 . FORM FIELD EQUATIONS

[2] A

[3] ZI_(NNG 2 _)p0

[_] Z2÷(NNG 2 2)p0 A

[5] Z3_(NNG _ _)p0 A

[6] KEQ÷(KA+K22+(_3)×K11),K12,L1 .

[7] KEQ+KEQ.[1]K21.(KA+KlI+(_3)xK22).L2 n

[8] KEQ+KEQ,E1]LC1,LC2,Z3 .

[g] FREQ÷RU,[1]RV,[1]((NNG w),1)p0

/10] CEQ÷MM,Z2,ZI .

[11] CEQ÷CEQ,[1]Z2,MM,ZI .

[12] CEQ÷CEQ,[1](_Z1),(_ZI),Z3

ZERO MATRIX

ZERO MATRIX

ZERO MATRIX

X MOMENTUM (STIFFNESS)

Y MOMENTUM (STIFFNESS)

CONTINUITY (STIFFNESS)

FLOW RESULTANT VECTOR

X MOMENTUM (INERTIAL)

Y MOMENTUM (INERTIAL)

CONTINUITY (INERTIAL)
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FRONTEND

[0] FRONTEND A
[I] , PERFORMS UPFRONT ONCE ONLY FUNCTIONS
[2] ,

[3] TSTART ,
[_] CLEANUP ,
[5] STATMSG÷O Op'
[6] ND÷A .
[7] INPUT .

[8] GRIDGEN .
[9] COORXE .
[I0] MAP .
[11] INITIAL

! A

START CLOCK FOR TIRE CHECKING

ERASE OLD VARIABLES
INITIALIZE STATUS MESSAGE
NUMBER OF DIVISIONS PER SIDE OF REGION
SPECIFY INPUT PARAMETERS
GENERATE ELEMENT NODE NUMBERING

GENERATE XI-ETA COORDINATES OF THE NODES
MAP XI-ETA NODE COORDINATES INTO X-Y SYSTEM
INITIALIZE VARIABLES

FSTCM
[0] R÷X FSTCM M
[I] . RETURNS SUB-MATRIX WHERE MEMBERS OF X MATCH FIRST COLUMN OF M
[23 .

[3] R÷(M[;I]eX)_0 I+M

FSTI

[0]
[I]
[2]

R÷FSTI A

n PUTS I IN COLUMN OF EACH ROW OF A WHERE FIRST POSITIVE CHANGE OCCURS
R_<\A

FVEB
[03
[I]
[23
[3]
[4]
[5]
[6]
[7]
[e]

IS]

R÷FT FVE8 X=ET
RETURNS THE FIELD VARIABLE ON AN ELEMENT NODE BASIS

X IS FIELD VAR. ON A GLOBAL NODE BASIS FOR HIGHEST ORDER ELEMENT
n FT IS THE TYPE OF FIELD (E.G. 1-ENERGY)

ET÷FELT[FT] _ CONVERT FIELD TYPE TO ELEMENT TYPE

÷(ET=I 2)/rYPEI._YPE2 . CHECK TYPE OF ELEMENT
TZPEI:R÷X[ELN[;1 3 5 7]] . FIELD VARIABLES ON LINEAR ELEMENT BASIS

÷0 . EXIT
TZPE2:R÷X[ELN] , FIELD VARIABLES ON QUAD. ELEMENT BASIS
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FVCB

[0]
[1]

[21
[31
[4]
[5]

[6]
[71
[8]
[9]
[10]

[11]
[12]

R÷FT FVGB X;A;ET
. RETURNS THE FIELD VARIABLE ON AN GLOBAL NODE BASIS

. X IS FIELD VAR. ON A GLOBAL NODE BASIS FOR HIGHEST ORDER ELEMENT

. FT IS THE TYPE OF FIELD (E.G.
A

ET÷FELT[FT] .

÷(ET:I 2)�El.E2 ,
_1: .

X÷(2DA÷I+2xND)oX A
X÷(A+Apl O)/X n
R_,A_X .
÷0

T2:R÷X n

1-ENERGY)

CHANGE FIELD TYPE TO ELEMENT TYPE
CHECK TYPE OF ELEMENT
CONVERT TO LINEAR GLOBAL 8ASIS

MAKE FIELD VARIABLE A MATRIX
REMOVE LINEAR NODE COLUMNS
REMOVE LINEAR NODE ROWS
EXIT

LEAVE ON QUADRATIC GLOBAL BASIS

FVIP
[03
[13

[21
[3]

R+FVIP F

CALC FIELD VARIABLES AT INTEGRATION POINTS
A
R÷+/(NS 2)[|_;I]xOPAX(2 3)F[ELN]

GRAVVEC

[03 GV÷CRAVVEC:R;RZ
[I] n RETURNS GRAVITATIONAL BODY FORCE VECTOR
[2] n
[31 R÷RHO ,
[_] RZ+RHOZERO ,

[51 R[IEAI SFel 21÷RZ A
[6] R+Rxl-R÷RZ ,

[7] GV+(2 FVE8 R)xOPAX(2 3)(NS 2) n
[83 GV+-NODEV AINTGRT GV n

EEl GV÷(GRZ[I]xGV).[O.51GRZ[2]xGV A

DENSITY
REFERENCE DENSITY
SET SOLID AND 2% NODES TO RBOZERO
NORMALIZED DENSITY

MULTIPLY BY THE SHAPE FUNCTIONS
INTEGRATE ON GLO8AL BASIS
MULTIPLY BY GRAVITY

GRIDAELN
[0]
[1]
[2]
[3]
[,]

[5]
[6]
[7]
[8]
[9]
[10]

ELN÷GRIDLELN GNQ:A
. GENERATES QUADRATIC NODE NUMBERS (ELEMENT BASIS) FOR GRIDGEN
A

A÷I,(-I+3xND)pl 1 0 .
ELN÷A\GNQ .
ELN÷A_ELN .

ELN[;A]+ELN[;-I+A+IEAI~A] .
ELNEA;]+ELN[-I+A;] ,
ELN÷I 3 2 _(WpND.3)pELN n
ELN÷.[I 2],[3 _]ELN n
ELN+ELN[;7 8 9 6 3 2 1 _ 5] A

EXPANSION VECTOR
EXPAND GLOBAL NODE NUMBER ON COLUMNS

EXPAND GLOBAL NODE NUMBERS ON ROWS
DUPLICATE COLUMNS
DUPLICATE ROWS
RESHAPE NODE NUMBERS
AND SEPARATE FOR EACH ELEMENT
REORDER FOR STANDARD ELEMENT
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GRID&LNODE

[0] LNODE+GRID_LNODE GNL;A;N
[1] _ GENERATES LINEAR NODE NUMBERS (ELEMENT B_SIS) FOR GRIDGEN

[2] ,
[3] A÷2÷-le,_(2,N)ptN÷ND+I
[_] A÷CC(N.N)_tN*2)[;A])[A;]
C5] A÷((NDx2),ND,2)p((2xNE),2)pA
[6] A÷((ND*2).w)pl 3 2_(ND.W.ND)pl 3 2_A
[7] LNODE÷A[;3 _ 2 1]

GRIDLRSE

[0] RSE÷GRIDARSE;A;EN
[I] . GENERATES REGION SIDE ELEMENT NUMBERS

C23 .
C3] EN÷(2pND)p.ND*2 n ELEMENT NUMBERS
[_] A÷EN[I.I+_EN;] _ ELEMENTS ON SIDES 3 AND 1
[5] A÷A.[1]_EN[;1.-I÷pEN] n ADD ELEMENTS ON SIDES _ AND 2
[6] RSE_A[2 _ I 3;] . ELEMENT NUMBERS--EACH SIDE OF REGION

GRID_RSLN
[0] RSLN+GRIDLRSLN CNL;A

[1] n GENERATES REGION SIDE LINEAR NODE NUMBERS FOR GRIDGEN
[2] .
[3] A*2+[1]-leGNL n LINEAR NODE NUMBERS FOR SIDES 1 AND 3
[4] A_A.[I]_2+[2]-I_CNL _ ADD NODE NUMBERS FOR SIDES 2 AND
[5] RSLN÷A[I 3 2 _;] _ LINEAR NODE NUMBERS ON EACH SIDE

GRIDARSN

[0] RSN÷GRIDaRSN GNQ;A
[1] A GENERATES REGION SIDE QUADRATIC NODE NUMBERS FOR GRIDGEN
[2] n
[3] A÷2_[I]-leGNQ . NODE NUMBERS FOR SIDES I AND 3
[_3 A_A,[1]_2+[2]-I_GNQ _ ADD NODE NUMBERS FOR SIDES 2 AND
[5] RSN+A[1 3 2 _;] n NODE NUMBERS ON EACH SIDE OF REGION

GRIDGEN
[0] GRIDGEN;A;GNL;GNQ

. GENERATES ELEMENT NODE NUMBERING[I]

[2] .
[3] GNQ÷(2pA)p%(A÷I+2xND).2 .
[_3 GNL÷(2pA)_t(A÷I+ND)*2 .

[5] RSN÷GRIDARSN GNQ .
[6] RSELMT÷GRID_RSE .
[7] RSLN÷GRID&RSLN GNL ,

[8] ELN+GRIDaELN GNQ .
[g] LNODE÷GRID&LNODE GNL ,

GLOBAL NODE NUMBERS--QUAD. ELEMENTS
GLOBAL NODE NUMBERS--LINEAR ELEMENTS
NODE NUMBERS ON EACH SIDE OF REGION
ELEMENT NUMBERS--EACH SIDE OF REGION
LINEAR NODE NBRS.-EACR SIDE OF REGION

QUADRATIC NODE NUMBERS--ELEMENT BASIS
LINEAR NODE NUMBERS--ELEMENT BASIS
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HERON

[0] A÷HERON T;S
[I] R CALCULATES AREAS OF TRIANGLES "T" USING 8ERON'S FORMULA
[2] . LAST DIMENSION OF _ CONTAINS 3 SIDE LENGTHS

[3] S÷0.5x+/T
[_] A+(0rSx(S-I COLM T)"(S-2 COLM T)x(S-3 COLM T))*0.5

IEAI
[0]
[I]

[2]

R+IEA1 A
n RETURNS INDICIES OF LOCATION OF ALL ONES IN VECTOR A

R÷R/(xpA)xR÷A=I

IFST1
[0] R÷IFSTI A
[I] _ RETURNS INDICIES OF FIRST POSITIVE CHANGE IN EACH ROW OF A

[2] R+(.A)/.Ax(pA)px-lmpA+FSTI A.I

INBDY
[0]
[I]
[2]
[3]

[5]
[6]
[7]
[8]

[g]
[10]
[ZZ]
[12]
[Z3]
[1_J
[15]
[16]
[17]
[IS]
[Zg]
[20]
[21]
[22]

[23]
[2w]
[25]

INBDY

A SPECIFY REGION BOUNDARY CONDITIONS
A FIELD
, 1 TEMPERATURE
n 2 FLUID VELOCITY IN X DIRECTION

n 3 FLUID VELOCITY IN Y DIRECTION
. TYPES

n 1 PRESCRIBED VALUE
2 PRESCRIBED FLUX(SIGN CONVENTION FLUX IN IS POSITIVE)

BC÷5 0p0
n FIELD TYPE REGION SIDE PROPERTIES
BC+BC.I I I I -.5
BC÷BC,E I I 3 1.5

BC÷BC.2 1 1 _ 0
BC÷BC.2 I I 2 0
BC÷BC,2 1 I 1 0

BC÷BC,2 1 1 3 0
A

BC÷BC,3 1 I _ 0
BC÷BC,3 1 1 2 0
BC÷BC,3 1 1 1 0
BC÷BC,3 1 I 3 0
BC÷_BC

A

PRNODE÷2 0 n PRESCRIBED PRESSURE NODE
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INGKOM

[0] INGEOM;A;RR;ZR
[I] _ SPECIFY GEOMETRY INPUT PARAMETERS

[2] ,
[3] INREG .
[_] GF÷I n
[53 GRZ÷-2K-2 0

SPECIFY COORDINATES OF REGION
CARTESIAN COORDINATES
GRAVITATIONAL CONSTANTS

INITIAL
[0] INITIAL;A
[13 _ INITIALIZE VARIABLES

[2] ,
[3] CHKINPUT n
[_] RN÷I n
[5] AINTCON ANI+2 n
[6] SINTCON SNI+2
C7] AREA ,
[8] TIME÷TCTL[I]
[9] INITTEMP n
[10] INITVEL .
[11] INITPRES n
[12] INITMPROP
[133 EREQ_RPRES+RCOND A

[1_] A+.[1 2]GRAVVEC n
[15] FRE_÷A.[I]((NNG _).l)p0
[16] SETLAST A
[17] SETSTAR

CHECK INPUT PARAMETERS

REGION NUMBER
AREA INTEGRATION CONSTANTS
SURFACE INTEGRATION CONSTANTS
VOLUME AND SIDE AREAS OF ELEMENTS
INITIALIZE TIME
INITIALIZE TEMPERATURE

INITIALIZE VELOCITIES
INITIALIZE PRESSURE
INITIALIZE MATERIAL PROPERTIES
ENERGY RESULTANT VECTOR
GRAVITATIONAL BODY FORCE VECTORS
FLOW RESULTAN_ VECTOR

SET LAST TIME ITER. VARS.
SET LAST CONVERGENCE ITER. VARS.
INITIALIZE STORAGE OF FIELD VARS.

INITMP

[0] INITMP;A:DATA
[I] n INITIALIZE MATERIAL PROPERTIES: CASE WHERE PRESSURE NODE PRESCRIBED
[2] .

[3] TF÷(NNG 2)DTINIT n INITIALIZE TEMPERATURES TO TINIT
[_] DATA÷(PROPDATA6SEL I _ 6)[1 _ 2;;] n ASSUME INITIALLY I_
[5] A+(PP.[I.5]TF)INTQR DATA , INTERPOLATE
[6] EF÷A[1;1;] , ENERGY FIELD
[7] UPPROP n UPDATE ALL PROPERTIES

INITMPROP
[0] INITMPROP

[1] . INITIALIZE MATERIAL PROPERTIES USING AVERAGE CONDITIONS
[2] .
[3] ÷(2:lING 'PRNODE')/NP n CHECK IF PRESSURE NODE PRESCRIBED
[_] STOP n STOP EXECUTION

[5] NP:INITMP , INITIALIZE PROPERTIES
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INITPRES

[0] IHITPRES

[I] _ INITIALIZE PRESSURE FIELD

[2] .

[3] +(O=_NC 'PFINIT')/NXT1 "

[_] PF÷PFIHIT .

[5] +0 .

[6] NXTI:PF÷(NNG I)pPRNODE[1] .

[7] INITMP .

[8] PF÷FAN STATPRES .

CHECK IF PFINIT EXISTS

USE VALUES IN PFINIT

EXIT

FIRST USE REFERENCE PRESSURE

CALC. DENSIT7

CALC. STATIC PRESSURES

INITTEMP

[0] INITTEMP;A

[1] A INITIALIZE TEMPERATURE

[2] A

[3] TINIT÷,e_(2pI+A)p(A+2×ND)INTERVALS -.5 1.5 R INITIALIZE TEMPERATURE

INITVEL

[0] INITVEL

[I] _ INITIALIZE FLUID VELOCITIES

[2] n

[3] ÷(~^/2:0NC 2 6p,UFINITVFINIT')/ZERO

[_] UF÷UFINIT A

[5] VF+VFINIT A

C6] ÷0 .

[7] ZERO:UF÷(NNG 2)pO .

[8] VF÷(NNG 2)pO .

CHECK FOR INITIAL VELOCITIES
INITIAL U VELOCITY

INITIAL V VELOCITY

EXIT

ASSUME ZERO U VELOCITY

ASSUME ZERO V VELOCITY
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INPLZGN

[0]

[1]

[2]

[3]

C_]

[5]

[6]

[7]

C8]

[g]

ClO]

[11]

[12]

C13]

[1_]

[zs]

[16]

[17]

[18]

Jig]

[2o]

[21]

[22]

[23]

[2_]

R÷XY INPLYGN Q;AREAP;CNP;INP;MXY;NXY;NN;S;S1;S2

, FINDS IF POINTS XY ARE IN POLYGONS Q

, XY IS 2 COLUMN MATRIX AND @ p (NBR. POLYGONS) (NBR. NODES EA.) 2

, @ NODES ARE NUMBERED SEQUENTIALLY AROUND PERIMETER

, R RETURNS NBR. OF THE POLYGON CLOSEST TO EACH XY p (l*pXY)

, APPROACH IS TO FIND AREAS OF POLYGONS BY DIVIDING INTO TRIANGLES AND

, COMPARING TO SUM OF AREAS OF TRIANGLES OF XY AND EACH POLYGON SIDE
A

NN+(OQ)[2] ,

INP÷INP.[1.5]I_INP+zNN ,

CNP+Q[;INP|] ,

MXY+MEAN I 3 2_Q ,

MXY÷2 I 3_(NN,oMXX)oMXY .

S+CNP[;;1;]DIST CNP[;;2;] ,

SI÷CNP[;;1;]DIST MXY ,

S2÷CNP[;;2;]DIST MXY ,

AREAP÷J+/HERON S.S1.[2.5]$2 ,

CNP÷((lmpXY).pCNP)pCNP .

NXY+(I_x_)_(I_OCNP[;;;I;])p_XY

S÷((Z+oXY),pS)oS .

SI÷CNP[;;;I|]DIST NXY n

S2÷CNP[;;;2;]DIST NXZ

R÷_[+/HERON S.$1.[3.53S2 .

R÷((_R)-(I_pR)pAREAP)mOPAX 2 AHEAP

R+IFSTI(L/R):OPAX 1R ,

NUMBER OF NODES PER POLYGON

INDS. OF SUCCESSIVE NODE PAIRS

COORDS. OF SUCC. NODE PAIRS

MEAN X Y COORDS. EACH PLYGN.

RESHAPED FOR NBR. OF NODES

SIDE LENGTHS OF POLYGONS

LENGTHS OF 1 NODE TO MEAN PT.

LENGTHS OF 2 NODE TO MEAN PT.

AREA OF EACH POLYGON

RESHAPE NODE PAIRS FOR EACH XY

RESHAPE XY ALL PLYGNS.. NODES

RESHAPE PLYGN SIDE LENGTHS

CALC LENGTHS OF 1 NODE TO XY

CALC LENGTHS OF 2 NODE TO XY

AREAS EACH PLYGN. WITH EA XY

NORMALIZED DIFF. IN AREAS

CLOSEST PLYGN. FOR EACH XY

INPROD

[0]

[1]

[2]

[3]

[_]

[5]

[6]

[7]

[8]

[g]

[ZO]

D÷A INPROD 8;C;RA;N;CB;R;E

n CALCULAIES INNER PRODUCT OF MULTIPLE MATRICIES

÷((OpA)x(opB))ICHK

÷(~(xl(E÷2÷-2epA)=(2÷-2epB)))ICHK

÷((C÷I+-lepA)=(R+lm-2epB))INXT

CHK:'INCORRECT p IN INPROD'

STOP

NXT:RA÷I+-2_pA

C8+l+-l_pB

D÷(E,RA,CB)o+/[1](_ 2 3 I_(C8,N,RA,C)pA)x3 2 1 _(RA,(N÷x/E),R,CB)p8
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INPROG

[03

[1]

[23

[3] CIL÷6 A

[W] CPULIM÷90x3600 q

[5] TIMELIM÷72x3600 A

[6] EC÷I ,

[7] ERR÷O.05 ,

[8] FC÷I A

[9] FELT÷2 2 2 1 n

[10] ICTL÷O ,

[113 SEN÷5 n

[12] TCTL÷O 200 2 .

[13] THETA÷0.5 ,

[I_] TSC÷O .

[15] SSC÷I ,

INPROG

n SPECIF2 PROGRAM OPERATION INPUT PARAMETERS

CONVERGENCE ITERATION LIMIT

LIMIT FOR CPU TIME

TIME LIMIT

ENERG_ tALC. CONTROL (O-NO TRERMAL CALC.)

ALLOWABLE FIELD CONVERGENCE ERROR

FLUID FLOW CALC. CONTROL (O-NO FLOW CALC.)

ELEMENT TYPES FOR EACH FIELD

ITERATION CONTROL (O-SUB 1-NEWTON-RAPHSON)

SAVE FIELDS AT EVERY SFN TIME STEPS

TIME START. END AND INCREMENT CONTROL

TRANSIENT ALGORITHM CONTROL PARAMETER

TIME STEP CONTROL (O-CONSTANT. 1-VARIABLE)

STEADY STATE CONTROL

INPUT

t0] INPUT

[13 m SPECIFY AND PRINT OUT INPUT PARAMETERS

[2] .

[3] INGEOM n GEOMETRY FACTORS

[_] INBDY , 80UNDARY CONDITIONS

[5] INPROG n PROGRAM OPERATION PARAMETERS

[6] NE÷ND×ND n NUMBER OF ELEMENTS PER REGION

INREG

t0] INREG;RR|ZR;A

[1] _ SPECIFY INITIAL R AND Z COORDINATES OF REGION

[2] .

[3] ,'LARGE SQUARE BOX'

[_] RR÷.Ix0 0.5 I 1 I 0.5 0 0 0.5

[5] ZR÷.Ix0 0 0 0.5 I 1 1 0.5 0.5

[6] RZR÷RR.[O.5]ZR

INTERVALS

[0] I÷N INTERVALS P|B_E

[1] . GENERATES N INTERVALS FROM P[1] TO P[2]

[2] 8+1÷P

[3] E+I_P

[_] I÷B+(((E-B)4N)x-I+_N+I)
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INTQR
[0]
[1]

[23
[3]
[4]
[53

[6]
[7]
[S]
[g]
[lO3
[Zz]
[12]

[13]
[1_]
[15]
[16]

[17]
[183

R÷XY INTQR D;A;B;MAX;MIN;ND;NXY
n INTERPOLATES BY FINDING CLOSEST REGION AND USING DBL. @UAD. REGRESS.
. XY ARE X AND Y VALUES TO BE INTERPOLATED

n D ARE INTERP. DATA X, Y AND Z (MAY 8E MULTIPLE Z) p a3 NR 8
n NR IS THE NUM8ER OF QUADRATIC REGIONS
n R RETURNS INTERP. VALUES WITH 2 PARTIAL DERIV. p(-2+l+pO) 3 (I+DXY)

A
(A MAX MIN)÷NORMR_,[2 3]0 n

ND+(pD)p_A n
NXY÷(XY-OPAX 2(2+MIN))÷OPAX 2(2+MAX-MIN) n
A÷3 1 2_A÷ND[1 2;;] n
A+NXY INPLYGN A .

R÷ND INTQR_REG NXY,A n
R÷INTQRLUNN(R MAX MIN) A
_0 q

NOXY:R÷((-2+I+pD),3,0)pO q

EXIT IF NO POINTS

NORMALIZE REGION COORDS.
RESHAPE NORMALIZED COORDS.
NORMALIZE XY WITH MAX MIN
RESHAPE NORM. REGION X Y
FIND CLOSEST REGION
DO REGRESSION ANALYSIS
UNNORMALIZED THE RESULT
EXIT

RETURN IF NO VALUES

INTQRAREG
[03
[13
[2]
[3]

[5]
[6]
[7]
[83
[g]
[lO]
[113
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[Ig]
[20]
[21]
[22]
[23]
[2_]
[25]

R+D INTQRaREG XY;A;B;E;I;NDV:RI;UI
n CALLED BY INTqR, IT PERFORMS DOUBLE qUADRATIC REGRESSION BY REGION

XZ IS A 3 COLUMN MATRIX OF X AND Y VALUE_ AND REGION NUMBERS

D IS REGION X Y Z DATAp (_3) (NUMBER OF REGIONS) 8
n R IS INTERP. VALUES AND 2 PART. DERIV. p (-2+-1+p=D[2]) 3 (ImpXY)

RI+XY[;3] n REGION INDICIES
XY÷XY[;Z 2] n X AND Y DATA
E+3 1 2_D Q TRANSPOSE REGION DATA

UI÷REMDUPEL RI n UNIQUE REGION INDICIES
NDV+(-2+-I_pE) n NUMBER OF DEPENDENT VARIABLES
R÷(NDV,3,1÷pXY)pO _ INITIALIZE RETURN VARIABLE
A÷(NDV,pA)pA÷((2+pE),2)*E n RESHAPE INTERP. DATA (INDEP. VARS.)
E÷A,[_]2 3 I_((2+pE),-NDV)+E n ADD BACK AGAIN THE DEPEND. VARS.

. E HAS p NDV (NBR. REGIONS) 8 3

LOOP:+(O:OUI)/O n LOOP ON EACH REGION OF INTEREST
A+c[2 3]E[:UI[I];;] n NESTED ARRAY OF REGION DATA
I+IEA1 UI[1]=RI , INDICIES OF XY WITHIN THIS REGION

8÷c[2 3]((pA),oB)oB÷XY[I;] n NESTED ARRAY OF XY IN THIS REGION
A+_A QUADRGXY"B . DBL. QUAD. REGRES. ON "" DEP. VAR.
8+MINMAX_20+D[;UI[1];] n MIN AND MAX VALS. FOR REGION p 2 NDV
A[;;1]+_(_A[;;1])LIMITTO 8 n LIMIT INTERP. Z VALS. TO REGION Z'S
R[;;I]÷I 3 2_A . ASSIGN RETURN VALUES
UI+I+UI n DROP ONE FROM LOOP VARIA8LE

÷LOOP n END OF LOOP
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INT@R&UNR
[0]
[I]
[2]

[3]

[S]
[6]
[7]
[e]
[g]
[10]

[ZT]

U÷INTQRAUNN A|R;MMM

UNNORMALIZE A MATRIX "'A'" (NESTED ARRAZ) WRT. RANGE
A A[I] NORMALIZED MATRIX BETWEEN 0 AND I EACH COLUMN
A A[2] MAXIMUM VALUES FOR EACH COLUMN
, A[3] MINIMUM VALUES FOR EACH COLUMN

R RETURNS INTERP. VALUES WITH 2 PART. DERIV, p(DEP.
R
(R MAX MIN)+A n
MMM÷MAX-MIN

U÷(2÷MIN)+OPAX(1)( (2÷MMM)xOPAX(1)R[; .2;] ) ,
U÷U, [2] (2÷MMM)xOPAX(2) (R[ ;, 2 ;]$OPAX(2 )MMM[ 2] )
U÷U, [2] (2÷MMM)×OPAX(2)(R[; ,3|]$OPAX(2 )MMM[2] ) ¢I

VARS.) 3 (lmpXY)

MATRIX, MAX. AND MINS.
MAX MINUS MIN VALUES

NORM. DEPENDENT VARS.
DERIV. WRT. X
DERIV. WRT. Y

INV
[0]
[I]
[2]
[3]

[_]
[5]
[6]
[7]
[8]
[g3
[20]
[Iz]
[12]

I÷INV A;R
, CALCULATES INVERSE OF MULTIPLE 2x2 MATRICESp N 2 2

R÷pA
A÷(((1,p (,A))*_),_)p,A
I÷(pA)pl 0 0 1
AE;_]÷A[;_3-A[;33xA[;23tA[;13
I[;3]÷-I×I[;I]xA[;3]$A[;I]
I[;2]÷(I[;2]-I[;3]xA[;2]÷A[;U] )$A[;I]

I[ ;2]+(I[ ;2]-I[;_]xA[;2]÷A[;_] )+A [;I] ,.
I[ ;3]÷I[ ;3] ÷A [ ;_]
I[;_]÷I[;_]*A[;_]
I+RoI

JACCRK

[0] JACCHK A
[I] A CHECK IF DETERMINANT OF JACOBIAN HAS A SIGN REVERSAL
[23 ÷(O_(L/,A)xFI,A)IWARN
[3] ÷0
[_] WARN:'WARNING_ DETERMINANT OF JACOBIAN HAS A SIGN REVERSAL'
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JACOB
E0]
Eli
[2]
[3]

[5]
[6]
[7]
[8]
[9]
[lO]
[11]
[12]
[13]
[14]

JAC÷RZ JACOB S;RS|DX;DE;RN;ZN;A
, CALC. THE JACOBIAN MATRICES FOR ALL ELEMENTS
, S ARE THE SHAPE FUNCTIONS

RZ ARE THE COORDINATES OF THE ELEMENTS p2 NE (

RS÷(pS)[2]
DX+2 1 3_(NE,-2+pS)pS[2;;]

DE÷2 I 3W(NE,-2_pS)pS[3;;]
RN÷(RS,-2+pRZ)pRZ[1;;]
ZN÷(RS.-2_pRZ)pRZ[2;;]
A÷((RSxNE).I)p+/DXxRN
A÷A.((RSxNE).I)p+/DXxZN
A÷A.((RSxNE).I)p+/DExRN
A+A.((RSxNE).I)p+/DExZN
JAC+(RS.NE.2.2)DA

NODES PER ELEMENT)

LIMITTO
[0] R÷Y LIMITTO X
[I] , LIMIT Y TO RANGE BETWEEN DEFINED 8T X

[2] _ THE FIRST DIMENSION OF X MUST BE p2 THE MIN AND MAX VALUES
[3] _ R RETURNS MODIFIED Y p (pY)

[5] X÷MINMAX X , MAKE SURE MIN VALUES ARE FIRST
[6] Y÷YrOPAX(ppY)(.(I.I÷pX)*X) , SET MIN VALUES

[7] R÷YtOPAX(ppY)(.(-1.1+pX)+X) A SET MAX VALUES

LINFV
[0]
[1]
[2]
[3]
[_]
[5]
[6]
[7]
[e]
[9]

[10]
[IZ]
C12]

R÷LINFV F;SHP;A

. CONVERTS LINEAR FIELD VARIABLE TO VALUES AT ALL NODES
F IS LINEAR FIELD VARIABLE 0 (ND+I)*2

A R IS NODAL VALUES (GLOBAL BASIS)
A

R+(NNG 2)p0
A÷2 5p0 1 0 -1 0 -1 0 1 0 0
A÷(LSHAPE A)[1;:] ,

SHP÷( (NE).DA)OA ,
A÷+/SBPx2 3 I_(I_DSHP)p_F+F[LNODE]
A÷F,A _ n
A÷A[;1 5 2 6 3 7 4 8 9] ¢_
R[.ELN]÷.A .

INITIALIZE RETURN VARIABLE
MID NODES XI ETA COORDS.
SHAPE FUNCTIONS FOR MID NODES
RESHAPE FOR ALL ELEMENTS
MID NODE VALUES

COMBINE WITH LIN. NODE VALUES
REORDER ELEMENT BASIS
RETURN VARIABLE
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LSHAPE

[03 SHP÷LSHAPE XE;C;ETA;XI

[13 . CALCULATES LINEAR SHAPE FUNCTIONS AND THEIR DERIVATIVES

[2] .

[33 XI÷XE[I;] , XI COORDINATES

[_] ETA_XE[2;] _ ETA COORDINATES

[5] C+I.EYA.XI.[I.5]ETAxXI , POLYNOMIAL COEFFICIENTS

[63 C+1 3 2 _(3._.pC)pC _ RESHAPE TO MATCH _L

[7] SRP÷+/Cx2 I 3 4_((1+pXl).p_&)p_& , CALCULATE SHAPE FUNCTIONS

LUMP

[03

[I]

[2]

[33

[4]

R+LUMP C

n LUMPS THE CAPACITANCE MATRIX BY ROWWISE SUMMATION

C÷+_C n ROWWISE SUMMATION

R÷DIAG C _ USE SUM TERMS FOR DIAGONALS

LX

[03 LX;A

[I] _ LATENT EXPRESSION

[2]

[33 _TA_X÷'CMS(192'

[_] A÷I00 OSVO ' ' .

[53 A_I01 OSVO ' '

[6] _TA_K÷' )EDITOR 2'

[73 CLS .

[8] STRIPE n

[9] SKIP 1 .

[I0] 'PHASTRAN'

[11] SKIP 1 .

[12] W_!D÷'PHASTRAN'

INITIALIZE STACX VARIABLE

SHARE SYSTEM VARIABLE

SHARE STACK VARIABLE

USE EDITOR 2

CLEAR THE SCREEN

DISPLAY A STRIPE ON SCREEN

SKIP A LINE

HEADER

SKIP A LINE

WORKSPACE NAME

MAP

[0]

[13

[2]

[3]

[4]

[5]

[6]

[7]

[a]

[9]

[lO]

[11]

MAP;C;ETA;X;SHP;XI;Y

MAP XI-ETA COORDINATES OF NODES INTO X-I SYSTEM

n

XI+XEN[I;],

ETA÷XEN[2;]

C÷(ETAxXI*2).(XIxETA*2).[1.5](ZI*2)xETA*2 A

C÷I.XI.ETA.(XIxETA).(XI.2).(ETA*2).C

SHP÷+/CxOPAX(t 3)(((l_pC).p_&_)p_&_)
X÷+/SHPxOPAX(2)RZR[1;] ,

Y÷+/SRPxOPAZ(2)RZR[2;] A

RZN÷X.[O.5]Y

RZE÷X[ELN].[O.5]Y[ELN] A

XI COORDINATES

ETA COORDINATES

BUILD MATRIX COLUMNS OF

.XI-ETA POLYNOMIAL

SHAPE FUNCTIONS

X COORDINATES

COORDINATES

COORDS. OF GLOBAL NODES

C00RDS. OF ELEMENT NODES
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MDET

[0]

[1]

[2]

[3]

[_]

[5]

A+MDET B

CALCULATES DETERMINANT OF MULTIPLE 2x2 k_TRICESp N 2 2

A÷( ( (l÷pA)_. ) ,u. )pA÷,B

A÷(A[; 1]xA[;,,] )-A[;2]xA[z3]

A+(2÷ ((ppB)-2)_pB)pA

MEAN

[0]

[I]

[2]

M÷MEAN A

n FINDS MEAN OVER LAST INDEX OF A VECTOR

M+(*-I÷DA )x+/A

MINMAX

[0] R+MINMAX X

[1] A RETURNS THE MINIMUM AND MAXIMUM VALUES OF X

[23 R÷(LMX),EO.5]FMX

NNG

[0] N÷NNG FT:NLN_NQN

Eli n RETURNS THE TOTAL NUMBER OF NODES (GLOBAL) FOR EACH FIELD TYPE

[2]

[3] NLN+(ND+I)*2 n HUMBER OF LINEAR NODES

[_] NQN+(I+2xND)*2 n NUMBER OF QUADRATIC NODES

[5] N÷(NLN,NQN)[FELT[FT]] n RETURN VARIABLE
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NODEM

[0]

[1]

[2] n

[3] R÷I÷I÷pA ,

[_3 C÷-I+I+pA n

[5] ÷(R:W)IRL ,

[6] RNODE+ELN ,

[7] BI÷NNG 2 ,

C8] ÷[TYPE ,

[g] RL:RNODE÷LNODE ,

[10] BI÷(ND+I)*2 n

[11] CTYPE:÷(C=_)/CL .

[12] CNODE÷ELN ,

[13] B2_NNG 2 n

[I_3 +NXT n

[153 CL:CNODE+LNODE n

[16] B2÷(ND+I)*2 n

[17] NXT:D÷2 3 I_(R.C.NE)p_CNODE n

[18] D÷.D+3 2 IN(C.R.NE)pN(RNODE-I)xB2

[19] D÷D REDUCE.A

[20] B÷(x/B1.B2)pO A

[21] B[D[2;]]÷.D[1;] A

C22] B_(Bl.B2)pB

8÷NODEM A|B1;B2;C:D;R;RNODE;CNODE

, ASSEMBLE NODEL MATRICIES FROM ELEMENT MATRICIES

NUMBER OF ROWS

NUMBER OF COLUMNS

CHECK IF LINEAR ROWS

USE QUADRATIC NUMBERING

NUR8ER OF QUADRATIC NODES

JUMP AND CHECK COLUMN TYPE

USE LINEAR NUM8ERING

NUMBER OF LINEAR NODES

CHECK IF QUADRATIC COLUMNS

USEQUADRATIC NUMBERING

NUMBER OF QUADRATIC NODES

JUMP

USE LINEAR NUMBERING

NUMBER OF LINEAR NODES

RESHAPE COLUMN NODE NUMBERS

COMBINE WITH ROW NUMBERS

SUM WHERE MULTIPLE INDICIES

INITIALIZE RETURN VARIABLE

REORDER RETURN VARIABLE

RESHAPE RETURN VARIABLE

NODEV

[0] B÷NODEV A;BI;D;R:RNODE

[1] _ ASSEMBLE NODEL VECTOR FROM ELEMENT

[2] .

[33 R÷I+I+pA

[_] ÷(R:_)/RL ,

[5] RNODE÷ELN

[6] BI÷NNG 2 n

[7] ÷NXT n

[8] RL:RNODE÷LNODE

[g] BI÷(ND+I)*2 ,

[10] NXT:D÷,RNODE n

[11] D_D REDUCE.A n

[12] B_BlpO n

[13] B[D[2;]]÷D[1;] n

[1_] B÷(Bl.1)pB n

VECTORS

NUMBER OF ROWS

CHECK IF LINEAR

QUADRATIC NUMBERING

NUMBER OF QUADRATIC NODES

JUMP

LINEAR NODE NUMBERING

NUMBER OF LINEAR NODES

STRING OUT NUMBERS

SUM WHERE MULTIPLE INDICIES

INITIALIZE RETURN VARIABLE

REORDER RETURN VARIABLE

RESHAPE RETURN VARIABLE

NORMR

[0] R÷NORMR F;RIN|MAX

[1] , NORMALIZE MATRIX "F" WRT. RANGE (RESULT IS A NESTED ARRAY)

[2] . R[1] NORMALIZED MATRIX BETWEEN 0 AND 1

[3] n R[2] MAXIMUM VALUES FOR EACH COLUMN

[_] A R[3] MINIMUM VALUES FOR EACH COLUMN

[5] .

[6] MAX+F/F _ MAXIMUM OF EACH COLUMN

[7] MIN+L_F , MINIMUM OF EACH COLUMN

[8] R÷(F-(pF)pMIR)_(pF)pMAX-RIN n NORMALIZE FROM 0-1

[g] R+R MAX MIN _ RETURN NEW ARRAY, WITH MAX. AND MIN
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NS
[0] R_NS f

[I] . RETURNS SHAPE FUNCTIONS FOR ELEMENT T_PES
[23 . T IS THE FIELD TYPE (E.G. 1-ENERGY)
[3] .
[_] R÷_NST[FELT[T]] n SELECT FROM GLOBAL NESTED ARRAY

OPAX

[0]
[13
[2]
[3]
[.]
[5]
[6]
[7]
[s]
[g]
[lO]
[11]
[12]
[13]
[i_]
It5]
[_6]
[17]

R÷X(FN OPAX)B;AS;MIL;RT;Y
n APPLIES DIATIC PRIMATIVE OPERATOR ALONG AXES

(AS I)+B .
+((opX)=poY)/APP .
+((opY)>opX)/YL n
MIL+~(_ppX)eAS
+(~^/(pY):(_MIL)/pX)/ERR1 .
RT+(MIL/_DpX),(_MIL)/,ppX
Y_RT_((pX)[RT])pY
÷APP

YL:MIL÷~(_ppY)eAS n
÷(~^/(pX)=(~MIL)/pY)/ERR1 n
RT÷(MIL/IpoY).(~MIL)/IppY n
X÷RT_((pY)[RT])pX n

APP:R+X FN Y n
÷0 A

ERRI:OES 'RANK ERROR'

RIGHT ARGUMENT CONTAINS AXES AND Y
IF RANKS ARE SAME APPLY THE OPERATOR
FIND LARGEST RANK
MISSING INDEX LOCATIONS
CHECK FOR RANK ERROR
RESHAPE AND TRANSPOSE INFO.
RESHAPE Y
JUMP TO APPLY THE OPERATOR
MISSING INDEX LOCATIONS
CHECK FOR RANK ERROR
RESHAPE AND TRANSPOSE INFO.
RESHAPE X
PERFORM THE OPERATION
EXIT

PHASTRAN
[0] PHASTRAN A
[1] n MAIN CONTROL FUNCTION FOR PHASE CHANGE ANALYSIS MODEL
[2] .

[33 FRONTEND A n UPFRONT. ONCE ONLY FUNCTIONS
[_] TIMESTEP _ _ TIME INCREMENT FUNCTION

[5] 8E_ULT_÷RESULTS n FORMAT FINAL RESULTS
[6] STATUS TSTOP n DISPLAY COMPUTER USAGE

PROPDATA6SEL

[0] R÷PROPDATA6SEL N

[1] n RETURNS SUBSET OF PRQPDATA BASED ON STATE CONDITIONS AND PROPERTIES
[2] _ N IS NUMERIC VECTOR CORRESPONDING TO SF NOTATION
[3] .

[_] R+_BQ_Z_ . ALL PROPERTY DATA
[5] R+(v/R[3;;]eN)/[2]R n ONLY REQUESTED STATES
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PRSCRB

[o]

[1]

[2]

[3]

[_]

[5]

[6]

[7]

[8]

[9]

[lO]

[11]

£129

[13]

[I_]

[15]

PRSCRB;A;BNP;KB

PRESCRIBES FINITE ELEMENT E@UATIONS IN THE GLOBAL VARS. KBAR AND RBAR

PFEQ[1;] POSITIONS IN KBAR (1THRU I+pKBAR)

n PPEQ[2;] CORRESPONDING PRESCRIBED VALUES

n PFEQ[3;] (0 FOR SOLID NODES, 1 FOR BOUNDARY CONDITIONS)

PFEQ÷PFEQ[;APFEQ[I;]] n

PFEQ+(RDUPL PFEQ[1;])/PFE@

A÷_I÷pKBAR .

PFEQ+(PFEQ[1;]eA)/PFEQ n

BNP÷~AePFEQ[I;] A

A÷-(-BNP)/KBAR n

XB+((pA)_PFEQ[2;])xA

KB++/PFEQ[3;]x[2]KB A

RBAR÷(BNP/RBAR)+BNP/KB

KBAR+BNP/[1]BNP/KBAR n

PUT IN ASCENDING ORDER

REMOVE DUPLS. (LEAVE 1ST)

ALL POSITIONS IN KBAR

REMOVE ANY OUT OF RANGE

B00L. POS. NOT PRSCRBD.

COLUMNS OF K'S PRESCRIBED

g'S x PRESCRIBED V_LUES

ZERO SOLID NODES

NEW R VECTOR

NEW K MATRIX

PRSIDE

PRSIDE FT;B;C;D1;D2

o MODIFIES PPEQ WHICH DEFINES PRESCRIBED BOUNDARY CONDTIONS

[0]'

[I]

[2] A

[3] B÷BC[;3 2 I u 5] A

[4] B÷RN FSTCM B n

/5] B÷I FSTCM B a

[6] ((pFT)ocB)PRSIDEAFLD"FT o

[7] END:DI+PFEQ[I:]

[8] DI+¢(C÷RDUPL DI)/DI+_DI A

[g] D2+¢C/¢PFEQ[2 3;]

[10] PFEQ+DI,[I]D2 n

REORDER BC (REG. TYPE FT SIDE VAL.)

ONLY THIS REGION

ONLY PRESCRIBED BC'S

PRESCRIBE BC'S FOR EACH FIELD TYPE

MODIFY PFEG TO ELIMINATE

-DUPLICATE NODE BC'S

-LEAVING ONLY THE FIRST

RESET GLOBAL VARIABLE PFEQ

PRSIDEAADJ

[0] AN÷ON PRSIDEAADJ TYPE;PETS

[1] n ADJUSTS ORIGINAL NODE POSITIONS IN A MATRIX FOR FIELD TYPE

[2] n

[3] PFTS+(-I++/^kTYPEzCFT)÷FT A PREVIOUS FIELD TYPES

[_] AN+ON++/NNG PFTS. _DJUSTED NUMBERS (POSITIONS)

PRSIDEAFLD

B PRSIDE6FLD TYPE_N;V

. PRESCRIBES BOUNDARY CONDITIONS FOR A FIELD

[0]

[1]

[2]

[3] 8+TYPE FSTCM 8 n

[_] +(O:oB)/O .

[5] N+TYPE SIDENODES 8[;1] A

[5] V÷,W(@pN)pi"i"8[:2]

[7] (N V)+((,N)V)PRSIDE_TEMP TYPE .

[8] N+(,N)PRSIDEAADJ TYPE n

[9] PFEQ÷PFEQ,N,[I]V,[0.5]I

BOUNDARY CONDITIONS FOR TYPE

EXIT IF NO BC'S FOR THIS TYPE

FIND NODE NUMBERS

FIND ASSOCIATED VALUES

HANDLE TEMP. BC'S DIFFERENTLY

ADJUST MATRIX POSITIONING

ADD PREVIOUS PRESCRIBED VALUES
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PRSIDE6TEMP
D+NF PRSIDEATEMP TYPE|I_C_I1;I2:N_V
CONVERTS TEMPERATURE BOUNDARY CONDITIONS TO ENERGY BC'S

[0]

CZ]
[2] ,
[3] D÷NV .
[_] ÷(TYPE_I)/O ,

[5] (N V)÷NV ,
[6] D÷N.[O.S](pN)pO ,
[7] II+IEA1 I÷(1 FVG8 SF)[N]el _ 6 .
[83 I÷(PROPDATA6SEL 1 _ 6)[_ 1 2_;] .

[g] C+V[II].[I.5](1 FVGB PF)[N[II]] ,
[10] D[2;I13÷(C INTQR I)[1|1:] n
[11] D÷c[2]D

INITIALIZE RETURN VARIABLE
EXIT IF NOT TEMPERATURE BC
NODES AND VALUES
SETUP RETURN VARIABLE
IND. OF NODES IN SINGLE PHASE
SINGLE-PHASE PROPERT_ DATA
USE TEMPERATURE AND PRESSURE
INTERPOLATE SINGLE-PHASE POINTS
RETURN NESTED ARRAY

PRSPRES
[o] PRSPRES
[1] . PRESCRIBES PRESSURE NODEM
[23 .
[3] ÷(2:QNC 'PRNODE')/NP A
[_3
[5] PRSP1
[6] ÷0

[7] NP:PRSP2

CHECK IF PRESSURE NODE PRESCRIBED

PRESCRIBE PRES. (TOTAL MASS CONSTRAINED)

PRESCRIBED PRESSURE NODE (OPEN SYSTEM)

PRSP1

[0] PRSPI:A_8_NN
[1] . PRESCRIBES PRESSURE NODEM: CASE WHERE TOTAL MASS CONSTRAINED
[2] . USES PRESSURE VALUE FROM LAST ITERATION
[3] .

[4] NN÷NNG 2 . NUMBER OF QUAD. NODES (GLOBAL BASIS)
[5] A÷NNp((I+2xND)pl 0).(ND+I)p0 . BOOL. WHERE PRES. NODES OCCUR
[6] B÷v/(2.NN)o(NN+z2xNN)_PFEQ[I;] _ BOOL. WHERE VELOCITIES PRESCRIBED
[7] A_(AzO)/A+(~AxB)xA\,(ND+I)*2 n PRES. NODES WHERE VEL. NOT PRSCRBED.
[8] 8÷PF[I÷A] A USE 1ST UNPRSCRBED. PRES. NODE
[g] PFEQ+PFEQ.3 lp((I÷A)+SwNN).B.I . PRESCRIBE THE PRESSURE NODE

PRSP2

[03 PRSP2_N
[1] . PRESCRIBES PRESSURE NODEM: CASE OF OPEN SYSTEM
[23 .
[33 N÷(+/NNG 2 3)+PRNODE[1] . MATRIX LOCATION OF NODE NUMBER

[_3 PFEQ÷PFEQ.3 lpN.PRNODE[2].I , PRESCRIBE THE PRESSURE NODE
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PRSVLC
[03 CE+PRSVLC FT
[1] A RETURNS LOCATIONS OF PRESCRIBED VALUES FOR THESE FIELD TYPES

[23 A
[33 CE÷(+/NNG FT)pl . VECTOR OF 1'S FOR ALL NODES
[_3 CE[(PFEQ[1;])]÷O . INSERT O'S WHERE PRESCRIBED

QLGSHP
[0]
[I]

[23
[33
[4]
[5]
[6]
[7]
[8]
[g]
[Z0]
[11]

[12]
[13]

SRP+QLGSHP XE;A;C:ETA;XI
CALCS. QUADRATIC LAGRANGIAN SHAPE FUNCTIONS AND DERIVATIVES

XI÷XE[I:]
ETA÷XE[2;] n
C÷(ETAxXI.2),(XIxETA.2),[I.5](XIxETA).2

C÷I.XI,ETA,(XIxETA),(XI*2),(ETA.2),C

A÷Q_&_xOPAX 2(0 I 0 I 2 0 2 1 2) A
A÷A[:2 5 _ 7 I 8 3 g 63
SHP+SHP,[O.5]C+.x_A .
A+C_&_xOPAX 2(0 0 I I 0 2 I 2 2) .
A÷A[:3 . 6 8 7 1 g 2 5] n
SHP÷SHP,[I]C+.x_A

XI COORDINATES
ETA COORDINATES
BUILD MATRIX OF POLYNOMIAL

.COEFFICIENTS
CALCULATE SHAPE FUNCTIONS

COEF. FOR DERIV. WRT XI
REORDER
DERIV. WRT XI
COEF. FOR DERIV. WRT ETA
REORDER
DERIV. WRT ETA

QUAD_PLI
[0] P+QUAD_PLY XI;X;Y

[1] A FORMS POLYNOMIAL FOR 2 DIMENSIONAL QUADRATIC
[2] . XI IS A 2 COLUMN MATRIX OF X I VALUES
[3] .

[4] X÷XI[:1]
[5] Y÷XY[:2] n
[6] P÷I,X,(X*2),Z,(Y.2),(XxY),(yxX.2),[1.5](XxY.2)

X VALUES
Y VALUES
FORM POLYNOMIAL

QUADRGXY
[o]
[1]

[2]
[3]
[_]
[5]
[6]
[7]
[8]
[g]

[zo]
[11]
[12]

[13]
[1_]
[15]

Z÷D QUADRGX_ XI;C:K;DX;DY;PXY
PERFORMS QUADRATIC REGRESSION ANALYSIS IN 3 DIMENSIONS X Y Z

. XY IS A 2 COLUMN MATRIX OF X AND Y VALUES TO BE INTERPOLATED

. D IS A 3 COLUMN MATRIX OF X Y Z DATA USED IN THE INTERPOLATION

. Z RETURNS INTERP. VALUES AND THEIR DERIVATIVES p (l+pXI) 3
A

K+QUAD6PLY D[|I 2]
K+DE:3]|K
PX)[+QUAD_PLI XI A
Z+PXY+. xK n

C+1 2 0 1 1 2 0 0xK[2 3 1 6 8 7 1 13
DX÷PXY+. xC
Z+Z, [1.5]DX .

C+1 1 1 2 0 2 0 0xK[_ 6 7 5 1 8 1 1]
DY÷PXY+. xC .

Z+Z,DI .

POLYNOMIAL OF INTERP. DATA
REGRESSION ON DATA

POLY. OF XY'S TO BE INTERP.
INTERPOLATED VALUES
COEF. FOR DERIV. WRT. X
DERIV. OF Z WRT. X AT XY
CATENATE TO RETURN VARIA8LE

COEF. FOR DERIV. WRT. Y
DERIV. OF Z WRT. Y AT XY
CATENATE TO RETURN VARIA8LE
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RCOND

[0] RC+RCOND

[1] _ RETURNS SUB-VECTOR FOR INTERNAL CONDUCTION

[2]

[3] RC÷+/[3]((DX 1),DZ I)xOPAX(2 3)(1 FVEB TF) n

[_] RC+RCxOPAX(1 2)(FVIP KT) n

[5] RC++/RCxOPAX(I 2 _)((DX I),DY 1) .

[6] RC_((ORC),I)oRC A

[7] RC_-NODEV AINTGRT RC

DERIVATIVES OF TEMP.

MULT. BY CONDUCTIVITY

MULT. BY DERIV. SHP. FNS.

RESHAPE TO COLUMN VECTOR

INTGRT. GLOBAL NODE BASIS

RDUPL

[0] R÷RDUPL X

[11 . RETURNS A BOOLEAN FOR REDUCING DUPLICATE VALUES LEAVING ONLY THE 1ST

[2] n

[3] R÷I l_<\Xo.=X

REDUCE

X÷IND REDUCE VAL;C;D;C2;CS;I

n REDUCES (BY SUMMATION) A VECTOR WITH MULTIPLE INDICIES

t0]

[11

[21

[3] IND+IND[I+_INDI n

[_3 VAL÷VAL[II n

[5] C2+INDzl¢IND n

[6] +(lzx/C2)/NXT A

[7] X÷VAL,[O.5]IND n

[8] +0 n

[91 NXT:

[I0] C3÷C2+(~C2)x((pC2)-I)_C2 n

[111 D÷C3/INDxC3 n

[12] C+VAL+I#VALx(-I+pVAL)_C3*I

[133 C+((-I+DVAL)¢C3)/C n

[1_1 X÷D REDUCE C n

REORDER INDICIES SEQUENTIALLY

AND THE CORRESPONDING VALUES

LOCATIONS OF DUPLICATES

JUMP IF DUPLICATE INDICIES EXIST

RETURN VARIABLE

EXIT

BOOLEAN WITH O'S AT FIRST DUPL.

REDUCED SET OF INDICIES

SUM VALUES

ELIMINATE THOSE VALUES

RECURSION TO FURTHER REDUCE

REMDUPEL

[0] R+REMDUPEL X

[1] n REMOVES DUPLICATE ELEMENTS OF X

[2]

[3] R÷((X*X)=_pX)/X

RESULTS

[0] R+RESULTS|HDR

[1] n DISPLAYS FIELD VARIABLES

[2] .

[3] R÷PF,EF,TF,SF.UF,[I.5]VF

[_] HDR÷'PRESSURE' 'ENERGY' 'TEMPERATURE'

[5] R÷uHDR,[1]R

'STATE' 'U-VELOCITY' 'V-VELOCITY'
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RROZERO

[03 R÷RROZERO|DATA_IP
[13 A CALCULATES THE REFERENCE DENSITY
[2] ,
[3] DATA÷(PROPDATAaSEL _)[I 4 5;;] .

[_] IP÷I 2_(MEAN PF).MEAN TF ,

[5] R*I_,IP INTQR DATA .

USE LIQUID DATA
USE MEAN PRES. AND TEMP.
INTERPOLATE ON DENSITY

RPRES
[0] RP÷RPRES
[13 _ FORMS PRESSURE RESULTANT VECTOR
[2] A

[3] RP÷PF[ELN]x(DFN UF)[I;:]+(DFN VF)[2:_]
[_] RP÷-NODEV AINTCRT(NS l)x[2 3]RP

SAVEFIELDS
[03 NTS SAVEFIELDS SFN

[I] A SAVES FIELDS AT EVERY DFN TIME STEP. PUTS IN NESTED ARRAY SAVEFLD_
[23 A
[33 _(OxSFNJNTS)/O _ EXIT IF NOT

[_3 _AZIF&D_÷_AZ_E&D_.¢TIME(PF.EF.TF.SF.UF.[1.5]VF) _ SAVE FIELDS

SETLAST

[0] SETLAST
[13 _ SETS VARIABLES FROM LAST TIME ITERATION
[2] ,

[3] RELAST÷EREQ , LAST ENERGY RESULTANT
[_] RFLAST_FREQ , LAST FLOW RESULTANT
[5] EPRI_EF , LAST ENERGY SOLUTION

[63 FPHI+UF.VF.4 FVG8 PF A LAST FLOW SOLUTION

SETSOLID

[0] SETSOLID=A:N;NSOL|P
[I] , SETS VELOCITIES TO ZERO FOR NODES IN SOLID STATE
[23 ,
[3] NSO_÷IEAI~SF_ n FIND NON-LIQUID NODES
[_] UF[NSOL]÷O A SET U VELOCITY TO ZERO
[5] VF[NSOL]÷O _ SET V VELOCITY TO ZERO
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SETSTAR

Col SETSTAR

[13 n SETS EF, UF. VF AND PF AT LAST CONVERGENCE ITERATION

[2] .

[3] EFSTAR+EF n LAST ENERGY VALUES

[_] ÷(FC=O)/O n CHECK IF FLOW CALCS. WERE SOLVED

[5] UFSTAR÷UF . LAST U VELOCITIES

[6] VFSTAR÷VF . LAST V VELOCITIES

[7] PFSTAR÷PF n LAST PRESSURES

SIDENODES

R÷FT SIDENODES S;ET

n RETURNS THE REGION SIDE NODES FOR A FIELD TYPE

E0]

[1]

[2] . S IS THE SIDE NUMBERS

[31 . FT IS THE TYPE OF FIELD (E.G.

[5] ET÷FELT[FT] .

[6] ÷(ET=I 2)/TI,T2 n

[73 ÷0 .

[8] 21:R÷RSLN[S:]

C93 ÷0 .

[I0] TT:R÷RSNCS:3 n

1-ENERGY)

CHANGE FIELD TYPE TO ELEMENT TYPE

CHECK TYPE OF ELEMENT

EXIT IF NOT VALID ELEMENT TYPE

LINEAR SIDE NODES

EXIT

QUADRATIC SIDE NODES

SIFAC

[01

£1]

[23 .

[3] DX÷2 I 3_(NE.oqSS[2;;])oQSS[2;:]

[_] DE÷2 I 3_(NE,pQSS[3I;])pQSS[3:;] n

[5] XN÷((pQSS)[2],-2+pRZE)pRZE[1;;] .

[6] YN÷((pQSS)[23.-2÷pRZE)pRZE[2;;] n

[7] A÷(_,((pQSS)[2]t_),NE)p÷/DXxXN

[8] B÷(_,((pQSS)[2]t_),NE)p+/DXxYN n

[9] C÷(_.((pQSS)[2]÷_),NE)p÷/DExXN n

[10] D÷(_,((pQSS)[2]_),NE)p+/DExYN n

[11] $I÷._((A[1;;]-2)+811;;3-2)*0.5

[123 $2÷._((C[2;;].2)+D[2;;3.2)*0.5

[13] S3÷,_((A[3;;]*2)+B[3;;3*2)*0.5 n

[1_] S_÷,_((C[_;;1"2)+D[_;=]'2)*0.5 .

[153 A÷2 1 3_(NE,pQSS[1;;])pQSS[I;;]

[161 A÷(w.(SNI+I),NE)p+/A n

[173 SIF÷Ax(pA)p_SI,S2,S3.[1.5]Sw

SIF÷SIFAC;DX;DE;XN;YNIA;B;C:D:S1;ST;S3;S_

n CALCULATES THE SIDE INTEGRATION FACTOR FOR USE WITH SINTGRT

DERIV. SHP. FNS. WRT. XI

DERIV. SHP. FNS. WRT. ETA

X C00RDS. OF NODES

Z C00RDS. OF NODES

DERIVATIVES x COORDINATES

DERIVATIVES x COORDINATES

DERIVATIVES x COORDINATES

DERIVATIVES x COORDINATES

SIDE I

SIDE 2

SIDE 3

SIDE

INCLUDE THE SHAPE FUNCTION

•AS PART OF THE ...

SIDE INTEGRATION FACTOR
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SINTCON

SINTCON N|A;N1

n INTEGRATION CONSTANTS FOR USE WITH SINTGRT

[0]

[1]

[2] .

[3] NI÷I+SNI÷N .

[_] A÷NI+(_![I;:])[SNI;]

[5] SXEI÷A,(NIpl),A,(Nlp-1) A

[6] SXEI÷SXEI,[O.5](NIp-I).A.(Nlol),A n

[7] _SS÷QLGSHP SXEI .

[8] LSS÷LSHAPE SXEI .

[g] QSIF÷SIFAC n

ORDER OF GAUSS-LEOENDRE

INTEGRATION POINT CONSTANTS

XI COORDINATES

ADD ETA COORDINATES

qUADRATIC SHAPE FUNCTIONS

LINEAR SHAPE FUNCTIONS

SIDE INTEGRATION FACTOR

SINTGRT

[0]

[I]

[2]

[3]

[_]

[5]

[6]

[7]

[83

[g]

[I0]

[Ii]

[12]

I+SINTGRT A;N1;WE

n INTEGRATES FUNCTION OVER SIDES OF ELEMENT IN XI-ETA COON. SYSTEM

A

NI÷SNI+I

+(lep,A)/_CALAR

÷(^I(PQSIF)=3_pA)/NXT

STATUS ERRM_Q[2] n

÷0 n

NXT:A÷Ax(-I_1ppA)_(-I_pA)pQSIF

÷END

_CALAR:A+AxQSIF n

I+ORDER OF INTEGRATION

CHECK IF A IS SCALAR

CHECK IF pA IS LIKE pQAIF

MESSAGE TO USER

EXIT

MULTIPLY BY INTGRT. FACTOR

JUMP TO FINISH INTEGRATION

MULTIPLY BY INTGRT. FACTOR

_ND:WE÷(2¢_ppA)_(2@pA)pNI÷(C![2;;])[SNI;] n _WEIGHTING FACTORS

I÷+/[I]+/[I]WExA _ INTEGRATE ALL SIDES

SKIP

[03

[I]

[2]

S÷SKIP N

. PRODUCES "N'" 8LANK ROWS

S÷(N,2)p' '

STATPRES

SPF÷STATPRES;A;NXN:XYC

n CALCULATES THE STATIC PRESSURE DISTRIBUTION

[0]

[I]

[2] .

[3] NXN÷(NS _)INPROD I 2 _ 3_NS _ .

[_] XXC+RZH[|;1 3 5 7] n

[5] A÷+/[1]GRZx[1]((pXYC)pW FVE8 RHO)xXYC

[6] A÷NXN INPROD((3mpNXN),I)pA n

[7] A+NODEV AINTGRT A n

[8] SPE÷.A|NODEM AINTGRT NXN

[9] SPF÷SPF+PRNODE[2]-SPF[I+PRNODE] n

PRODUCT OF SHAPE FUNCTIONS

X Y COORDS. OF CORNER NODES

DENSITZxGRAVITYxLOCATION

MULTIPLY BY SHAPE FUNCTIONS

INTEGRATE ON GLOBAL BASIS

SOLVE FOR PRESSURE

ADD REFERENCE PRESSURE
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STATUS

[0] STATUS MSG
[1] , MANAGES STATUS MESSAGES

[2] .
[3] MSG+eMSG n
[_] STATMSG+STATMSG ADDROWS MSG ,
[5] MSG ,

FORMAT MESSAGE
RECORD IN STATMSG

DISPLAY THE MESSAGE AT TERMINAL

STRIPE
[0] S+STRIPE
[1] n CREATES STRIPE LINE BORDER

[2] S÷7gOE1AV[I_5]

TIMECHK

[03 CK+TIMECHK
[1] , RETURNS A 0 IF TIME LIMIT IS EXCEEDED
[2] ,

[3] CK+-(O.OOIxDAI[3]-TI[3])_TIMELIM
[_] +(CK=I)/O
[5] STATUS 'RUN TIME LIMIT EXCEEDED'
[63 ,

CHECK RUN TIME
EXIT IF OK
MESSAGE TO USER

TO SET SdTIMECHK

TIMESTEP
[o]
[1]
[2]
[3]
[_]
[5]
[6]
[7]
[8]

[g]
[lO]
[11]
[12]
[13]
[1_]
[15]
[16]
[17]

[18]

TIMESTEP:CIC:NIT;NTS
n TIME STEPPING FUNCTION
A
NTS÷O

CIC+lOpO n
LOOP:TIME+TIME+TCTL[3] n
NTS+NTS+I ,

STATUS 'TIME'(-I_TIME) n
÷(TCTL[2]c-I_TIME)/O ,
+(O=CPUCHK)/O ,
+(O:TIMECHK)/O n
NIT+AGAIN 0 n
SETSOLID .

CIC÷I+CIC.NIT .
CIC ADJSTEP NIT ,

SETLAST ,
NTS SAVEFIELDS SFN .
÷(CHKSS CIC)/O n
+LOOP ,

INITIALIZE TIME STEP COUNTER
INITIALIZE CONVERGENCE ITER. COUNTER
LOOP ON TIME
INCREMENT TIME STEP COUNTER
DISPLAY TIME
EXIT IF AT TIME LIMIT
EXIT IF CPU TIME EXCEEDED
EXIT IF RUN TIME EXCEEDED
CONVERGE AND RETURN ITERATION NUMBER

SET SOLID NODE VELOCITIES TO ZERO
UPDATE CONVERGENCE ITERATION COUNTER
ADJUST TIME STEP BASED ON ITER. NBR.
SET EF. UF. VF. PF FOR LAST TIME STEP
SAVE FIELDS AT CERTAIN TIME STEPS
EXIT IF STEADY STATE REACHED
CONTINUE IN TIME
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TOMATHIX

M÷TOMATRIX V

n CHANGES A SCALAR, VECTOR OR ARRAY OF RANK 3 OR NIGHER TO A MATRIX

[0]
[1]
[2] n

[3] M*V .
[_] ÷(2=ppV)/0 .

[5] ÷(2<ppV)IN1 .
[6] M÷(1,pV)pV+,V n
[7] ÷0 .

[8] _l:M÷((xl(-l+ppV)+pV),-l+pV)pV .

INITIALIZE RETURN VARIABLE
EXIT IF ALREADY MATRIX

CHECK IP RANK GREATER THAN 2
CONVERT SCALAR OR VECTOR TO A MATRIX
EXIT
CONVERT RIGHER RANK ARRAY TO A MATRIX

TSTART
[03 TSTART

[1] _ STARTS CLOCK FOR TIME CHECKING
[2] TI÷OAI

TSTOP

[0] R÷TSTOP;T2
£I] n DISPLAYS cPu, CONNECT TIMES SINCE TSTART WAS ISSUED
[2] .

[3] TT+0AI n CURRENT ACCOUT INFO.
[_] SKIP 1 A SKIP A LINE

[5] R÷(m0.001xTT[2]-_l[2]),' SEC. CPU' n . .DISPLAY CPU USAGE
[6] R+R ADDROWS(gO.OOI_rT[3]-TI[3]) , ' SEC. CT' n DISPLA_ CONNECT TIME

UPPROP
[o]
[I]
C2]
C3]
[.]
[5]
[6]
[7]
[8]

[g]
[I0]
[11]

UPPROP;DATA;IP:DP
n UPDATES PROPERTIES ON GLOBAL NODE BASIS

DATA÷PROPDATA6SEL16 n
IP÷PF,[1.5]EF .
DP÷IP INTQR DATA A
SF÷DP[1;1;] .
TF÷DP[2;I;] A
RHO+DP[3|I;] A

KT÷DP[_;I_] n
VIS+DP[5|I;] .
UPPROP_TEMP n

PROPERTY DATA
INDEPENDENT PROPERTIES
PERFORM INTERPOLATION
STATE
TEMPERATURE
DENSITY

CONDUCTIVITY
VISCOSITY
PRESCRIBED TEMPERATURES
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UPPROP&TEMP

[o]
[I]
[2]

[3]
[_]
[5]
[6]
[7]

[8]
[g]
[1o]
[ii]

UPPROPATEMP;8|N|T
n PLACES PRESCRIBED TEMPERATURES IN UPDATED PROPERTIES

A

8÷8C[;3 2 1 _ 5] A
B+RH FSTCM B A
B+I FSTCH B A
8+1FSTC_ B .
÷(0=1_p8)/0 A
8÷l"m"B .
N+I SIDENODES B[;1]
T+_(_DN)pB[:2] n

TF[,N]÷,T .

REORDER BC (REG. TYPE FT SIDE VAL.)
BC'S FOR TBIS REGION
ONLY PRESCRIBED BC'S
ONLI TEMP. 8C'S
EXIT IF _0 TEMP. BC'S
PRESCRIBED TEMPERATURE CONDITIONS
FIND NODE NUMBERS
FIND ASSOCIATED TEMP. VALUES
REPLACE WITH PRESCRIBED TEMPERATURES
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_ 2 6 7 NOMERZC

++-0.57735 0.57735 0 0 0 0 0

0 -0.7746 0.7746 0 0 0 0

-0.33998 0.33998 "0.86114 0.8611_ 0 0 0

0 -0.53847 0.53847 -0.90618 0,90618 0 0

-0.23862 0.23862 -0.66121 0.66121 -0.g32_7 o.g32q7 0

0 -0.w0585 0.40585 -0.7_153 0.7_153 -0.9_911 0.94911

I 1 0 0 0 0 0

0.88889 0.55556 0.55556 0 0 0 0

0.65215 0.65215 0.3_785 0.3W785 0 0 0

0.56889 0._7863 0._7863 0.23693 0.23693 0 0

0,_6791 0.W6791 0.36076 0.36076 0.17132 0.17132 0

0,_1796 0.38183 0.38183 0.27971 0.27971 0.129_8 0.129q8

_L 3 _ _ NUMERIC

++ 0.25 -0.25 -0.25 0.25

0.25 -0.25 0.25 -0.25

0,25 0.25 0.25 0.25

0.25 0.25 -0.25 -0.25

-0.25 0.25 0 0

0.25 -0.25 0 0

0.25 0.25 0 0

-0.25 -0.25 0 0

-0.25 0 0.25 0

-0.25 0 -0.25 0

0.25 0 0.25 0

0.25 0 -0.25 0

#_&E g 9 NUMERZC

0 0 0 0.25 0 0 -0.25 -0.25 0.25

0 0 -0.5 0 0 0.5 0.5 0 -0.5

0 0 0 -0.25 0 0 -0.25 0.25 0.25

0 0.5 0 0 0.5 0 0 -0.5 -0.5

0 0 0 0.25 0 0 0.25 0.25 0.25

0 0 0.5 0 0 0.5 -0.5 0 "0.5

0 0 0 -0.25 0 0 0.25 -0.25 0.25

0 -0.5 0 0 0.5 0 0 0.5 -0.5

1 0 0 0 -1 -1 0 0 1
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7 3 8 NUMERIC

++1000 1000 1000 500 0

1000 1000 1000 500 0

1000 1000 1000 500 0

2000 3000 qO00 _000 _000

_000 qSO0 5000 5000 5000

5000 6000 7000 7000 7000

1 1 1 1 1

2 2 2 2 2

u, u, u, q. u,

-2 -1 0 0 0

0 0 0 0 0
0 1 2 2 2

1000 1000 1000 1000 1000

1000 1000 1000 1000 1000
1000 g99 998 998 998

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0.01 0.01 0.01 0.01 0.01

0.01 0.005 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001

0

0

0

3000

_500

6000

1

2

-1

0

1

1000

1000

999

1

1

1

0.01

0.005

0.001

0

0

0

2000

qO00

5000

1

2

-2

0

0

1000

1000

1000

1

1
1

0.01

0.01

0.001

500

500

500

2000

4000

5000

1

2

-2

0
0

1000

1000

1000

1

1

1

0.01

0.01

0.001
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226 61 CRARACEER

PRESSURE ENERGY TEMPERATURE STATE

6500 1.5

6500 1.5

6500 1.5

5500 1.5

6500 1.5 .

6500 1.5

6500 1.5

6500 1.5 q

6500 1.5

6500 1.5

6500 1.5

5500 1.5

6500 1.5

6500 1.5

6500 1.5

6012 1.012

59_6 0.9_6

5908 0.9075

5896 0.8958

5907 0.9067

59_5 0.9_9

6000 0.9g97

5075 1.075

6152 1.152

6238 1.238

6312 1.312

6376 1.376

6_18 1._18 W

6_39 1.W39

6_3 1.wu3

5632 0.6318

55_5 0.5_5

5_81 0.W808

5_70 0._701 q

5502 0.5017

5561 0.5606

5637 0.637_

5737 0.7369 4

5852 0.8516

5991 0.9909

6125 1.125

6253 1.253

63_1 1.3_1

6387 1.387 q

6393 1.393

5_12 0._121 q

53_9 0.3_88 q

5319 0.3193

5339 0.3395

5391 0.3905

5_5_ 0._5_

5528 0.5275

5612 0.612 W

0.285_

0.1_27

0

-0.1_27

-0.2855

-0.W282

-0.571

-0.7136

-0.8563

-0.9989

-1.1_I

-1.28_

-1._27

-1.569

-1.712

0.285_

0.I_27

-0.0000731

-0.1u28

-0.2856

-0._28_

-0.5711

-0.7138

-0.8565

-0.9991

-1.1_2

-1.28_
-1 _27

-1 57

-1 712

0 285_

0 1_26

-0 0001_62

-0 1_29

-0 2857

-0 _285

-0 5712

-0 7139

-0 8566

-0 9993

-1 1_2

-1 285

-1 _27

-1 57

-1 712

0 2853

0.1_25

-0.0002_9_

-0.1_31

-0.2859

-0._286

-0.571_

-0.7141

U-VELOCIT_

0.000E0

0.000E0

0.000EO

0.000EO

O.000E0

O.O00EO

0.000E0

0.000E0

0.000E0

0.000E0

0.000EO 0

0.000E0 0

0.000E0 0

0.000E0 0

0.000E0 0

0.000E0 0

7.690E-5 0

2.0_6E-_ 0

3.577E-w 0

_.575E-w 0

5.WIIE-_ 0

5.6w_E-w -0

5.391E-_ -0

_.795E-_

3.738E-_

2.752E-W

1.726E-_

9.500E-5

2.9_9E-5

O.O00EO

O.000E0

2.318E-5

1.0_9E-_

2.20gE-w

3.298E-_

_16E-_

51_6E-_

5 562E-_

5 5_1E-_

_907E-_

3 931E-_

2 625E-_

1_59E-_

358E-5

0 000E0

0 000E0

1 603E-5

8,098E-5

1.6_0E-_

2.295E-_

3.002E-_

3._6WE-_

3.81_E-_

V-VELOCITX

0

0

0

0

0

0

0

0

0

0

00008336

00008165

00006989

00005228

0000231_

000007881

00003793

-0_00005737

-0.00005605
-0.000060_1

-0.0000_9_g

-0.00003728

-0.00002886

0

0

0.0001787

0.0002365

0.0002257

0.0001771

0.000109

0.00003637
-0.0000_13_

-0.0001082

-0.000156

-0.0001709

-0.0001586

-0.000129

-0.0000975_

0

0

0.0002286

0.0003182

0,00031

0.0002_78

0.000163_

0.00007213

-0.0000352_
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-0.8568

-0.9995

-1.1#2

-1.285

-1.#27

-1.57

-1.713

0.2853

0.1#25
-0.0003526

-0.1#32

-0.286

-0.4288

-0,5716

-0.71_3

-0.857

-o.ggg7

-1.1_2

-1.285

-1 .,28

-1.57

-1.713

0.2852

O. lU,2q

-0.000_81

-0. 1433

-0.2861

-0. u,289

-0.5717

-0.71'44

-0.8572

-0.99g8

-1.1_3

-1.285

-1.428

-1.57

-1.713

0.2852

0.1#23

-0.0005#36

-0.1#3#

-0.2863

-0._291

-0. 5719

-0.71_6

-0.8573
-1

-1. lU,3

-1.285

-1.#28

-1.571

-1.713

0.2851

0.1#23

-0.0005823

5718

5855

600_

6163

6280

63_2

63#9

5297

5270

528#

5346

5#26

5501

5567

5628

5707

5816
5952

6110
6236

6303

6307

5230

5217

5254

5346

5462

5563

5641

570#

5772

5859

5973

6107

6217

6270

6266

5185

5185

5240

5355

5503

5629

5722

5790

5850

5920

6010

6113

6197

6229

6215

51#7

51#9

5199

0.7179

0.85#6

1.00#

1.163

1.28

1.3_2

1.3#9

0.296g

0.270_

0.2837

0.3_56
0.4259

0.5012

0.5665

0.6279

0.7074

0.8159

0.9524

1.11

1.236

1.303

1.307

0.2296

0.2167

0.254.

0.3_6

0.4616

0.563

0.641

0.7041

0.7717

0.8589

0.9731

1.107

1.217

1.27

1.266

0.1851

0.1854

0.2_0_

0.3553

0.5031

0.629

0.7219

0.7901

0.8_96

0.920#

1.01

1.113

1.197

1.229

1.215

0.1_67

0.1_92

0.199#

3.9glE-_ -0.0001379

3.816E-q -0.0002268

3.355E-# -0.0002763

# 2.390E-4 -0.0002778

1.381E-4 -0.0002388

..29_E-5 -0.0001798

. 0.000E0 0

0.000E0 0

2.439E-5 0.0002732

5.313E-5 0.00038_

9.395E-5 0.0003759

1.278E-_ 0.0003055

1.708E-# 0.0002102

4 1.968E-# 0.0001018

. 2.150E-. -0.00001421

4 2.2.5E-4 -0.0001309

. 2.223E-. -0.0002_62

4 2.133E-4 -0.00032_6

4 1.586E-4 -0.0003514

4 9.541E-5 -0.000322_

. 2.86.E-5 -0.0002394

0.000E0 0

4 0.000EO 0

4 2.624E-6 0.0002847

-9.626E-6 0.0003924

" -7.733E-7 0_0003952

7.066E-6 0.0003328

3.202E-5 0.0002357

4 ".q66E-5 0.0001173

5.1.8E-5 -0.000001565

4 5.570E-5 -0.0001208

6.010E-5 -0.0002452

4 7.170E-5 -0.0003_05

4 5.406E-5 -0.0003918

. 3..11E-5 -0.0003808

4 7.5g0E-6 -0.0002802

O.000E0 0

0.000E0 0

. -2._77E-5 0.0002507

4 -8.511E-5 0.0003568

. -1.117E-_ 0.0003877

4 -1.290E-_ 0.0003##8

# -1.17.E-_ 0.0002526

# -1.110E-. 0.0001315

-1.057E-_ 0.000008866

. -9.617E-5 -0.0001139

4 -8.120E-5 -0.0002334

4 -5.397E-5 -0.0003323

4 -4.359E-5 -0.0003957

# -2.668E-5 -0.00039_1

4 -1.513E-5 -0.0002801

0.000E0 0

0.000E0 0

-5.409E-5 0.0001906

4 -1.536E-# 0.0002931
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-0.1q35

-0.2865

-0.w292

-0. 5719

-0.71;7

-0.857;

-1

-1.1_3

-1.285

-1. u,28

-1,571

-1.71_

0,285

0,1_22

-0.0006209

-0.1q37

-0. 2867

-0._29_

-0.572

-0.71_8

-0.8575

-1

-1.1_3

-1.286

-1 .*_28

-1.571

-1.71_

0.2853

0.1423
-0.0007695

-0 1_36

-0 286q

-0 _292
-0 5721

-0 71u,8

-0 8576

-1

-1.143

-1.286

-1._29

-1.571

-1. 7114

0. 2856

0.1_2W
-0.0009181

-0.1_35

"0. 2861

-0._291

-0. 5721

-0.71_9

-0.8577

-1

-1.1_3

-1.286

-1 .W29

531_

5_85

56q3

5767

585_

5922

5991

6063

613_

6181

6178

61q0

5109

511_

51_2

5229

5395

5587

57u9

5856

5934
5999

6053

6093

610_

6070

6010

5076

5075

5073

510_

5208

5377

557_

5706

5815

5887

5935

5951

5930

5866

5789

5015

5050

_98g

_962

5012

505_

5203

5319

5q_2

5511

55_9

5563

55_7

0.3136

0._848

0.6_33

0.767_

0,85_

0.9217

0.9906

1.063

1.13q

1,181

1.178

1.1_

0.1093

0,1137

0.1_16

0.2292

0.3953

0.5868

0.7_86

0.856

0.9337

0.9992

1.053

1.093

1.10_

1.07

1 01

0 07633

0 0748_

0073U_

0 10_1

0 2078

0 3773

0 5737

0 706_

0 8151
0 8869

0.93_8

0.951_

0.9296

0.8657

0.7888

0.01501

0.0_99

0

0

0.01226

0.05399

0.2031

0.3186

0._17

0.5109

0.5_9_

0,5625

0.5_68

-2.207E-_ 0.0003536

-2,669E-w 0.0003357

-2.719E-_ 0.0002525

-2.68_E-_ 0.0001368

-2.550E-q 0.00001995

-2,360E-_ -0.0000985

-2.082E-_ -0.000203

-1.596E-w "0,00029_1

4 -1.189E-_ -0,000358_

-6.W72E-5 -0.0003592

-1.935E-5 -0.0002_77

0.000E0 0

0.000E0 0

4 -5.810E-5 0.00009632

-1.857E-_ 0.000186

-2.911E-_ 0.0002786

4 -3.771E-_ 0.000296_

-_.205E-_ 0.0002258

-_.3_E-_ 0.0001229

-_.17_E-_ 0.0000227_

4 -3.825E-4 -0.00007911

-3.329E-_ -0.0001666

-2.552E-_ -0.0002_7

-1.817E-_ "0.000296_

-9._00E-5 -0.00029_

-2.657E-5 -0_00020_2

4 0,000E0 0

0.000E0 0

-2.655E-5 0.000007806

4 -I.255E-W 0.00005711

-2._20E-W 0.000162

4 -3.636E-_ 0.0002192

-_.63UE-_ 0.0001783

-5._58E-W 0.0001127

-5.65_E-_ 0.0000501_
-5._12E-_ -0.00002281

-_.817E-W -0.00008_81

-3.750E-_ -0.0001423

-2.675E-_ -0.0001789

-1.383E-_ -0.0001855

-3.90_E-5 "0.0001_3w

0.000E0 0

0.000E0 0

1.650E-5 -0.00003792

2 O.000EO 0

2 0.000E0 0

-1,752E-_ 0.00006113

-3.263E-_ 0.00006718

-_.3_5E-_ 0.00006556

-5.081E-_ 0.00005376

-5.271E-_ 0.00002952

, -5.059E-_ 0.000001969

-_.196E-_ -0.00002726

-3.2_0E-_ -0.00005135

-1.853E-_ -0.00006537
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-1.572

-1.71_

0.2853

0.1_23

-0.0007391

-0.11+35

-0.2863

-0,4292

-0,5721

-0.7149

-0.8577

-1

-1.143

-1.286

-1.429

-1.572

-1.714

0.285

0.10,22
-0.0005601

-0.10,35

-0.2865

-0._293

-0. 5721

-0.710,9

-0.8578

-1.001

-1.143

-1.286

-1 ._29

-1.572

-1.714

0.2851

0.1422

-0.0O06266

-0.1435

-0.2864

-0.4293

-0. 5721

-0.7149

-0.8577

-1

-1.143

-1.286

-1 ._29

-1.572

-1.715

0.2852

0.1_22

-0.0006932

-0.1q35

-0.286_

-0 ._292

-0.5721

-0.71_9

5512

543q

3901_

3900

3892

388;

3887

3911

3958

;01;

0,139

4313

0,473

0,536

0,543

0,0,16

_331

3766
3768

3762

3761

3762

3771

3790

3802

3807

3802

3800

3799

3799

3803

3801

3634
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